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Existing intersection safety analysis studies have primarily focused on macro-level static infrastructure and
highly aggregated traffic features. The emergence of Connected Vehicle (CV) has enabled researchers to extract
micro-level driving behavior attributes from CVs. Although longitudinal driving behaviors (e.g., hard braking)
have been studied recently, critical lateral left and right turn behaviors, which are common and pose potential
conflict risk at intersections, have been largely overlooked. Meanwhile, dealing with both spatial heterogeneity
and nonlinear effects between crash frequency and multitudinous driving features is another critical challenge
for intersection safety analysis. To address such gaps, this study extracted driving behavior features for both
longitudinal movements and lateral left and right turns to comprehensively capture driving dynamics at in-
tersections. A novel spatial ML framework was proposed to integrate nonlinear ML models (e.g., LightGBM) with
geographically weighted regression: Besides a global ML model training on all samples to fit average estimations,
distinct local ML models are trained for each spatial sample with its neighbors to capture localized spatial
heterogeneity. Empirical experiments using CV data at a Florida county show that the inclusion of lateral turning
behavior (e.g., hard left/right turns) leads to improved accuracy of intersection crash frequency prediction.
Compared to traditional Rrandom Forest, XGBoost, LightGBM, and Multilayer Perceptron models, the spatial ML
integrating LightGBM demonstrates significant improvements of 5.8%, 6.3%, and 5.6% in RMSE, MAE, and Rz,
respectively. The results reveal the nonlinear impact of driving features and their spatial heterogeneity: In
downtown, hard braking events primarily influence the risk of rear-end (RE) crashes. Drivers’ acceleration also is
more likely to lead to RE crashes in urban areas. While hard left turns show greater influence of sideswipe and
left turn crashes at suburban intersections.

1. Introduction

Intersections have been recognized as crash-prone locations within
the urban traffic network due to the complex vehicle movements,
multimodal interactions, and conflicts from different approaches. In the
United States, more than 25 % of traffic fatalities and 50 % of traffic
injuries occur at or near intersections each year (FHWA, 2024). In 2022,
42 514 traffic fatalities were recorded, of which 12,036 involved
intersections—accounting for 28.3 % of all fatalities, causing a signifi-
cant toll on people’s lives and property (FHWA, 2024). Consequently,
enhancing intersection safety is a critical step toward saving human lives
and realizing Vision Zero (USDOT). To achieve this goal, extensive ef-
forts have been dedicated to intersection crash frequency modeling and
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safety evaluation (Gu et al., 2023; Kabir et al., 2021; Yuan and
Abdel-Aty, 2018). Specifically, researchers have identified various
contributing factors (e.g., intersection traffic, geometric design, etc.)
and employed statistical and machine learning (ML) models to assess
their impacts on intersection crash frequency (Kabir et al., 2021; Lee
et al., 2023b), therefore providing valuable insights for traffic engineers
to implement targeted countermeasures to reduce intersection crashes
(Wang et al., 2024a; Wu et al., 2023; Wang et al., 2025).

However, previous studies mainly relied on macro-level infrastruc-
ture and traffic features, barely considering micro-level human driving
behaviors. Crashes—particularly within intersection areas—are mainly
caused by drivers’ risky driving behavior and failure to interact appro-
priately with other vehicles (Han et al., 2024a,b; Shirazi and Morris,
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2017). Compared to macro features describing road traffic environment,
micro driving behaviors inherently capture risky driving motions and
interactions, which are more closely related to intersection crashes (Gu
et al., 2023). Leveraging emerging high-resolution Connected Vehicle
(CV) data, recent studies started to extract micro driving features and
examine their impact on intersection crashes (Gu et al., 2023; Hunter
et al., 2021; Kamrani et al., 2018). While these studies highlighted key
impacts of risky driving behaviors on intersection crashes, they have
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primarily focused on longitudinal behaviors (e.g., hard acceleration and
braking). In reality, vehicles at intersection engage in both longitudinal
(e.g., driving straight) and lateral (e.g., left/right turn) interactions.
Critical lateral driving behaviors—such as hard left and right turn-
s—exhibit distinct patterns from longitudinal actions (e.g., car-
following) to capture risky lateral interactions related to vehicle safety
(Sander, 2017; Shirazi and Morris, 2017). For instance, a vehicle
executing a hard left turn can often sideswipe an oncoming vehicle. If
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Fig. 1. Overall workflow of this study.
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the oncoming vehicle brakes hard to avoid the collision, it may in turn be
rear-ended by trailing traffic. Therefore, it is important to incorporate
such risky turning maneuvers into intersection safety analysis. However,
existing studies either overlooked these turning maneuvers or mixed
them with longitudinal behaviors, making it difficult to assess their
impact on intersection safety and introducing potential estimation bia-
ses. To the best of our knowledge, no existing study has yet analyzed
risky driving behaviors specific to critical lateral turning movements and
established their relationship with intersection crash frequencies.

For intersection crash frequency modeling, spatial approaches have
emerged as a primary focus for addressing the spatial heterogeneity
issue in crash analysis (Arvin et al., 2019; Tang et al., 2020; Wang et al.,
2024). Various spatial statistical methods have been developed
including random parameter models (Lee et al., 2023a,b; Wang et al.,
2024b), spatial lag models (Hong et al., 2016), and geographically
weighted regression (GWR) (Li et al., 2022). Although existing spatial
statistical methods can capture complex spatial heterogeneity well, they
still strongly rely on the linear relationship assumption and struggle with
the high-dimensional traffic datasets (Wen et al., 2021; Zhou et al.,
2023). To address such limitation, recent studies have shifted toward
exploring integration spatial heterogeneity effects into ML frameworks
as ML models are significantly effective in modeling nonlinear and
high-dimensional datasets (Fan et al., 2023a; Wen et al., 2022; Zhou
et al.,, 2023). For example, the Geographical Random Forest (GRF)
model, which integrates Random Forest (RF) into geographically
weighted model, has been employed to account for spatial heterogeneity
and achieved notable prediction accuracy in recent traffic safety
modeling (Wu et al., 2024; Wang et al., 2024). However, the potential of
integrating other ML methods (e.g., XGBoost and LightGBM), known for
robust nonlinear fitting capabilities, into spatial modeling has yet to be
investigated (Sigrist, 2023). Therefore, developing novel spatial ML
approaches that can capture both nonlinear effects and spatial hetero-
geneity in intersection crash modeling remains to be further
investigated.

To address the aforementioned research gaps, this study aims to
extract multiple risky driving behavior features at intersections and
capture their nonlinear effects and spatial heterogeneity on intersection
crashes. The overall workflow of this study is shown in Fig. 1. First,
multiple macro-level features are extracted from open-source traffic and
street view data, and micro-level driving behavior features are identified
from county-scale CV data. Second, these features are fed into the pro-
posed novel spatial ML framework for model testing and interpretation.
Finally, the experimental analysis focuses on model performance,
identifying crash-critical factors, and examining their spatial
heterogeneity.

Overall, the main contributions of this paper include:

1) Identifying high risk driving behavior features for both longitudinal
(e.g., hard braking and acceleration) and lateral turning (e.g., hard
left and right turn) movements from CV trajectories to analyze their
impact on intersection crashes.

2) Proposing a spatial ML framework that integrates multiple ML
models (e.g., RF, XGBoost and LightGBM) with geographically
weighted regression to account for spatial heterogeneity in inter-
section crash frequency modeling.

Following this, section 2 reviews related literature and section 3
details data preparation. Section 4 shows the proposed methodology and
section 5 illustrates the experiment results. The discussion and conclu-
sion of this study are presented in Section 6 and 7, respectively.

2. Literature review
2.1. CV-data-based intersection driving behavior features
Benefiting from the of vehicle

development connectivity
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technologies, it is now possible to obtain micro-level driving behavior
features from high-resolution CV data to reflect detailed driving in-
teractions within intersections. Table 1 summarizes the existing inter-
section crash studies considering driving behavior features from CV
datasets. For instance, a group of studies have utilized CV data from the
Safety Pilot Model Deployment (SPMD) Program to extract several
driving volatility measures (e.g., standard deviation, coefficient of
variation of speed and longitudinal acceleration) and link them with
intersection crash frequencies (Arvin et al., 2019; Hu et al., 2020;
Kamrani et al., 2018; Wali et al., 2018). Similarly, Hunter et al. (2021)
leveraged hard-braking events from Wejo CV data to predict rear-end
crash frequency, indicating a strong correlation between these events
and crashes.

Although these studies highlighted key impacts of risky driving be-
haviors on intersection crashes, existing features have primarily focused
on longitudinal behaviors (e.g., hard acceleration and braking). While
some studies have incorporated lateral accelerations, they simply
aggregated these features at the overall intersection level without dis-
tinguishing specific vehicle movements (e.g., left/right turn) (Arvin
etal., 2019; Gu et al., 2023). However, left- and right-turn behaviors at
intersections exhibit distinct interaction patterns with surrounding
traffic (Sander, 2017; Shirazi and Morris, 2017), yet are still overlooked.
From a traffic management perspective, it is more important to identify
safety issues at the level of specific vehicle movements rather than high-
aggregated lateral behavior measures. For instance, frequent hard left-
turn maneuvers may serve as a strong indicator of angle and left-turn
crashes—insights that cannot be obtained from existing aggregated
analyses. Therefore, there is still a research gap on capturing risky
lateral left and right turning behaviors and examining their impacts on
intersection crash frequencies.

2.2. Intersection crash frequency spatial modeling

Spatial heterogeneity has emerged as a critical concern in intersec-
tion crash analysis, reflecting how the effect of the same factor on
crashes varies across different spatial contexts (e.g., intersection in city,
urban, and rural areas). To address such issue, spatial statistical methods
such as spatial-lag models (Cui et al., 2024; Hong et al., 2016), Bayesian
spatial models (Wang et al., 2023), and geographically weighted
regression (GWR) (Brunsdon et al., 1998; Tang et al., 2020) have been
developed to capture complex spatial heterogeneity. However, as these
models fundamentally rely on linear assumptions, they struggle to es-
timate the inherent nonlinear relationships between the outcome vari-
able and contributing factors (Han et al., 2024a; Wu et al.,, 2024).

Table 1
Existing intersection crash studies with CV-based driving behavior features.
Studies Ccv Driving behavior features Crash
datasets types
Kamrani et al. 2017 SPMD Longitudinal accelerations Rear-end
Wali et al. 2018 SPMD Longitudinal acceleration/ All
jerk, standard deviation of crashes
speed
Arvin et al. 2019 SPMD Longitudinal & lateral Rear-end,
acceleration/jerk, standard head-on
deviation of speed
Hunter et al. 2021 Wejo Hard braking events Rear-end
Mohammadnazar SPMD Longitudinal & lateral All
et al. 2022 acceleration, standard crashes
deviation of speed
Gu et al. 2023 SPMD Longitudinal & lateral Rear-end

acceleration, yaw rate,

standard deviation of speed

Longitudinal: Driving-straight All
speed, acceleration, crashes
deceleration

Lateral: hard left and right-

turn, radial acceleration

Current study Streetlight
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Moreover, these models discard highly correlated factors to prevent
overfitting, which could lead to the loss of potential critical information
within high-dimensional datasets (Zhai et al., 2025; Zhao et al., 2024).

To address the limitations of statistical models, notable efforts have
been made to integrate spatial heterogeneity effects into ML in recent
safety studies as summarized in Table 2. Among them, the Geographical
Random Forest (GRF) model proposed by Georganos et al. (2021) is the
most popular one, which establishes local RFs for each sample and its
spatial neighbors to account for spatial heterogeneity. Several studies
have utilized GRF in recent traffic safety modeling and achieved better
predictive accuracy and interpretability (Wu et al. 2024; Wang et al.
2024). However, RF may underperform on high-dimensional dataset
(Do et al., 2010; Nguyen et al., 2015; Qu et al., 2019), which limits the
predictive performance of GRF. Although a few studies have attempted
to integrate neural networks into spatial modeling, these approaches
also face challenges such as high computational cost and unstable
training on small-size data (Goel et al., 2023). In contrast, boosting-
based models (e.g., XGBoost and LightGBM) excel at nonlinear fitting
for high-dimensional data and demonstrate high computational effi-
ciency. Therefore, they have been widely utilized and achieved strong
performance in recent traffic research (Li et al., 2023; Yang et al., 2021).
Nevertheless, the potential of combining such ML models with spatial
modeling has not been explored (Sigrist, 2023). It is worthwhile inves-
tigating such novel spatial ML approaches to account for both spatial
heterogeneity and nonlinear effects in intersection crash frequency
modeling.

3. Data preparation

In this study, we initially identified 612 signalized intersections at
Hillsborough County using the FDOT Geographic Information System.'
After excluding 111 sites with missing data (e.g., lacking traffic AADT
data or census-tract socioeconomic data), a total of 501 intersections
were finally selected. For each intersection, five kinds of macro-level
features were extracted: (a) traffic volume, (b) intersection geometric
design, (c) socioeconomic characteristics, (d) road context classifica-
tions, and (e) visual environment features. In terms of micro-level fac-
tors, multiple driving behavior features were extracted from the high-
resolution CV data. The collective time frame of macro-level features

Table 2
Existing spatial ML methods in traffic safety studies.

Model

Model innovations

Potential limitations

Geographical RF
(Georganos et al., 2021;
Gu et al., 2023; Wu
et al., 2024)

XGBoost with geographic
coordinates
(Zhao et al., 2025)

Geographically Weighted
Neural Network
(GWNN)

(Zhang et al., 2024)

Geographically weighted
convolutions neural
network regression
(GWCNNR)

(Li et al., 2025)

Develop a global RF
model for all samples and
multiple local RF models
for each sample with its
spatial neighbors to
capture spatial
heterogeneity
Incorporate geographic
coordinates (latitude and
longitude) as inputs into
the XGBoost model
Establish local Neural
Network (NN) for each
sample and its spatial
neighbors

Estimate spatial weights
using CNN and then
multiplied into the
regression coefficients in
the ordinary linear
regression

RF models may
underperform on high-
dimensional dataset

Cannot capture spatial
dependencies among
input factors

NN training needs longer
computation time and
may be unstable on small
datasets

Separately fit spatial and
non-spatial features may
ignore their interactions

! https://www.fdot.gov/statistics/gis/default.shtm.
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is fixed for 2024 to match the duration of the CV data (Jan 3-13 and Jan
30-Feb 8, 2024). To mitigate the randomness of short-time crash
recording, three-year crash data (June 2021 to May 2024) are utilized to
better reflect the safety level at intersections (Desai et al., 2021; Hunter
et al., 2021; Wali et al., 2018). The details of each data processing are
elaborated on in the following sections.

3.1. Intersection crash identification

The crash data were obtained from the Florida Signal Four Analytics
(S4A) system.2 Each record includes precise crash time, location, colli-
sion type and severity, the number of vehicles involved, and other
pertinent details. According to the S4A system, crashes that occur within
250 ft of the stop line are defined as “intersection-related crashes”. Thus,
within-intersection and intersection-related crashes were first identified,
encompassing various vehicle-vehicle crash types (e.g., rear-end, side-
swipe, left/right-turn, etc.). Referring to existing studies (Avelar et al.,
2015; Kabir et al., 2021), an 80-ft spatial buffer around the centerline of
intersection approaches was also created to ensure that the matched
crashes did not occur in surrounding buildings or parking lots. Finally, a
total of 24,707 intersection crashes were identified, and some examples
are presented in Fig. 2.

3.2. Macro-level features matching

(1) Traffic volume and intersection geometric design.

From the FDOT Geographic Information System,” the average annual
daily traffic (AADT) of all vehicles and large vehicles (e.g., truck, bus) on
intersection major and minor roads were calculated. These features
reflect intersection traffic volume as crash exposure as well as consid-
ering the impact of large vehicles. The geometric design of intersection
approaches can also be obtained from the RCI system. For example, the
posted speed limit is available for each roadway, allowing this infor-
mation to be matched with the major and minor approaches at the in-
tersections. Finally, a total of 26 geometric design features were
extracted as shown in Table Al.

(2) Socioeconomic Data.

Socioeconomic data reflect the regional economic and demographic
characteristics surrounding the intersection. To extract such features,
census-tract-level socioeconomic features (e.g., average median income,
population) were derived from the USDOT Equitable Transportation
Community (ETC) Project.” Since one intersection may be near multiple
census tracts, a 0.5-mile buffer (Avelar et al., 2015; Cai et al., 2018) was
created around each intersection. Socioeconomic features from the
census tracts that spatially overlapped with this buffer were aggregated
to each intersections. A weighted average was utilized as suggested by
existing studies (Huang et al., 2017; Pulugurtha and Sambhara, 2011).
As an example, the average population variable E; for the intersection
buffer i can be calculated:

Aji,
E; = iA E; (@)
where E; is the population of census tract j, A;; is the area of census tract j
within buffer i, and A; is the area of the census tract j.

(3) Road context classifications.

Considering that traffic patterns vary significantly between urban,
suburban, and rural areas, the context classifications of roadways were
obtained from the Florida Land Use & Infrastructure Plan.” Based on the

2 https://signal4analytics.com.

3 https://www.fdot.gov/statistics/gis/default.shtm.

4 https://www.transportation.gov/priorities/equity/justice40/etc-explorer.

5 https://hcfl.gov/government/county-projects/land-use-and-infrastructure-
studies/land-use-and-infrastructure-other-publications.
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Fig. 2. Examples of crashes in the intersection buffers.

surrounding land use, roadways were divided into six categories (e.g.,
C3C for suburban commercial areas, C4 for urban areas, as shown in
Table Al). Recent research indicates that the traffic patterns and safety
are quite different among these roadway classifications (Al-Omari et al.,
2021; Mahmoud et al., 2021). Therefore, it is essential to combine such
features in intersection crash frequency modeling.

(4) Visual Environment Features.

Typically, the proportions of environmental objects in street-view
images are utilized to reflect drivers’ visual perception of their sur-
roundings (e.g., grass indicating open space, vehicles representing
traffic density, etc.). Using Google Maps API, the center point was
identified as the viewpoint origin of street view images for each inter-
section. Following existing studies (Cai et al., 2022; Xue et al., 2024;
Yue, 2024), 8 Google Street View (GSV) images were obtained at
headings ranging from 0° (north) to 315°(northwest) to fully capture the
entire intersection environment (Fig. 3(a)). It is noted that intersections
undergoing construction were excluded to ensure a stable environment
during the study period. Images at intersection center offer a more
comprehensive view, whereas perspectives from individual travel di-
rections often face obstructions from vehicles blocking other elements
(e.g., buildings and trees). Finally, a total of 8*501 = 4008 GSV images
were collected. To qualify for visual environment features in GSV im-
ages, Segmenter, a transformer-based segmentation model, was
employed to pixel-level objects classification (over 90 % reported clas-
sification accuracy). A total of 7 types of objects in GSV images were
labeled as shown in Fig. 3(b) (e.g., sidewalk, grass, vegetation, road,
building, sky, and vehicle). Other types of elements (e.g., pedestrian,
bicycle, animals, etc.) are excluded from the analysis, as they typically
occupy a small pixel proportion and are often missed in most samples as
suggested by Liu et al. (2025). Referring to existing studies (Abdel-Aty
et al., 2024; Cai et al., 2022; Fan et al., 2023b), the pixel proportions of
each object were calculated as visual environment features. Overall,
detailed descriptive statistics of these macro-level features are depicted
in Table Al.

3.3. Intersection driving behavior features extraction

In this study, the CV data are provided by StreetLight. It contains 3-
second-interval vehicle trajectories collected from original equipment
manufacturers (OEMs) using vehicle-to-cloud communication. Given
that the fleet is composed of multiple types of non-commercial vehicles,
it can better represent the vehicles on the roadways (Zhang and Abdel-
Aty, 2022). The data includes journey ID, capture time, GPS location,
heading, and speed as described in Table 3. The data spans two distinct

periods: Jan 3-13 and Jan 30-Feb 8. On average, it includes over
4,692,975 CV trajectory points per day, derived from 154,997 journeys,
providing full coverage of Hillsborough County with high market
penetration of 4.17 %, as shown in Fig. 4.

3.3.1. Spatial matching of CV data with intersections

Fig. 5(a) presents the spatial matching workflow of CV trajectory
data with intersections. To ensure data quality, erroneous CV data were
filtered out following the criteria of speed > 100 mph or updated time
interval > 5 s. Using the intersection and road GIS data, a joined spatial
buffer was created consistent with those used in the crash matching: a
250-ft buffer was applied to identify CV points within the intersections
and their approaches. An 80-ft buffer from the centerline of intersection
roads was generated to exclude CV data not located on the roads (i.e.,
gray points outside the buffer are in a nearby parking lot in Fig. 5(b)).
Through the spatial joining between the CV data and intersection spatial
buffer, the final spatially matched CV data for each intersection were
obtained.

3.3.2. Identification of longitudinal and lateral risky driving behaviors

Risky driving behaviors refer to instantaneous driving actions
involving abnormal vehicle operations (e.g., extreme acceleration or
braking), which may lead to heavy surrounding traffic volatility and
even crashes (Wali et al., 2018). Previous studies have identified risky
longitudinal behaviors (e.g., hard acceleration and braking) based on
the longitudinal/linear acceleration (Gu et al., 2023; Hunter et al.,
2021). However, within the intersection area, drivers always encounter
hard left turns, right turns and other lateral risky driving behaviors when
navigating to another roadway direction. Therefore, based on the CV
trajectories, we calculated both linear and radial accelerations, and thus
identified risky longitudinal driving behaviors (hard acceleration and
braking) as well as lateral driving behaviors (hard right turn and left
turn).

(1) Linear and radial acceleration calculations.

Fig. 6(a) shows the calculation of both linear and radial acceleration
based on CV point. Mathematically, a CV trajectory point can be written
as P, = (X, V¢, 6;), where X; = (lat;,lon,) is the GPS location, V; is the
speed, and 6, is the travel heading at time t. Therefore, consider two CV
points during turning maneuver: the earlier point P,y = (X;0, Vio,610) at
time t0 and the subsequent point Py = (Xi1, Vi, 6n) at time t1. The
linear acceleration can be easily calculated:

AV V4 — Vg

LinearACCy; = —

At~ t1—t0 @
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Fig. 3. The illustration of visual environment features extraction from GSV images.

Table 3

Description of the raw CV data parameters.
Parameters Description Unit
Journey ID Unique identifier for a trip (from ignition start to end). —
Capture time  10-digit UTC timestamp s
Latitude North-South position of the vehicle -
Longitude East-West position of the vehicle -
Heading The heading of the vehicle travel. (e.g., 0: North; 90: East) °
Speed Speed of the vehicle at the instant the datapoint was mph

captured

As for the radial acceleration (a.k.a centripetal acceleration), it describes
the acceleration of an object moving along a curved path directed to-
ward the center of its trajectory. Thus, we need to first determine the
turning radius r:

/2

"=5n (20/2) whered = Euclideandistance(Xy, X0), A0 = |01 — 00|  (3)

Then, the radial acceleration can be calculated:

RadialACC,; = v_ W @

-

Based on the above formulas, both linear and radial acceleration can be
derived from the raw CV trajectory data. For example, Fig. 6(b)-(d)
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show the speed, linear and radial acceleration of an entire trip, respec-
tively. Clearly, the linear acceleration can reflect the acceleration (blue
points in Fig. 6(c)) and braking (red points in Fig. 6(c)) situations. While
at intersections, the radial acceleration increases significantly to effec-
tively capture the left and right turning behaviors.

(2) Risky driving behavior identification with dynamic thresholds.

Risky driving behaviors are often identified as extreme outliers in
terms of acceleration. For instance, if the linear acceleration exceeds a
certain threshold, it is classified as “hard acceleration”. Most existing
studies applied a fixed threshold across all speed conditions (Guo et al.,
2022, 2021; Han et al., 2024b; Hunter et al., 2021). However, the
capability of a vehicle to accelerate/decelerate varies significantly at
different speeds, i.e., at higher speeds the possible minimum decelera-
tion values are considerably smaller than those observed at lower
speeds. To overcome such limitation, a dynamic threshold approach
proposed by Wali et al. (2018) was adopted in this study. Specifically, a
series of 5Smph speed bins (i.e., 0-5mph, 5-10mph, ...70-75mph) were
first defined. Within each speed bin, the 3 ¢ rule was used to identify
these extreme acceleration outliers by calculating the upper bound
following existing studies (Gu et al., 2023; Wali et al., 2018):

ACC_thresholdy = py + 3% oy %)

where y; and oy represent the mean and the standard deviation of ac-
celeration within the respective speed bin k. Therefore, it ensures that
thresholds can be dynamically adjusted according to speed considering
the vehicle performance. However, as some speed bins contained
insufficient samples, the resulting thresholds were inconsistent (e.g., the
threshold at the 5-10 mph bin was lower than that for 10-15 mph). To
address such cases, we fixed the thresholds for speeds below 15 mph at
2.50 m/s? for hard acceleration and —2.75 m/s? for hard deceleration.
For speeds above 60mph, we set the thresholds to 0.71 m/s? for hard
acceleration and —0.64 m/s? for hard deceleration. For the radial ac-
celeration, we set the thresholds to 3.40 m/s? for speed bin of 0-10 mph
and 1.52 m/s? for speed bin > 35mph. Using this approach, risky driving
behaviors at intersections can be identified as shown in Fig. 7. Fig. 7(a)
shows the linear acceleration distribution across different speed bins,
with two threshold curves: the positive curve identifies hard accelera-
tion events, while the negative curve captures hard braking events. Since
radial acceleration is inherently positive, a single threshold curve was
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established to identify hard turning, as shown in Fig. 7(b). These turning
events are further categorized into hard right turns and hard left turns in
subsequent analyses.

3.3.3. Calculation of intersection driving behavior features

Considering different vehicle movements at intersections, CV tra-
jectories were further categorized into three types: drive-straight, left-
turn, and right-turn as shown in Fig. 8. Compared to the drive-straight
maneuvers, lateral turning maneuvers exhibit distinct spatial patterns
and movement interactions. For the right-turn maneuver (Fig. 8 (a)),
they are predominantly distributed around the outer parts of in-
tersections. In contrast, left-turn maneuvers occupy the inner intersec-
tion area, often overlapping with movements in other directions (Fig. 8
(b)). However, existing studies typically either solely rely on longitu-
dinal driving features or utilize the aggregated speed or acceleration
measures of the whole maneuvers, largely overlooking the distinctive
driving behaviors and interactions with other vehicles in lateral turning
maneuvers. To address this limitation, multiple driving behavior fea-
tures were calculated based on the three movement categories—drive-
straight, left-turn, and right-turn—to comprehensively capture risky
driving behaviors.

(1) Speed volatility.

Speed volatility is widely used to measure the variations in instan-
taneous driving, which is highly associated with aggressive drivers and
unsafe outcomes (e.g., crashes and conflicts) (Kamrani et al., 2018; Wali
et al., 2018; Yu et al., 2021). Referring to existing studies (Wali et al.,
2018), the standard deviation of speed was calculated to reflect the
driving volatility at intersections. First, at the maneuver level, the speed
standard deviation (STD_Speed;) for the i-th maneuver can be calculated
as follows:

STD_Speed; = 6)

where V;; and Vi, are the speed at timepoint t and the mean speed over
the i-th maneuver. T is the total number of timepoints recorded during
the i-th maneuver at the intersection buffer. Here, stop points (speed =
Omph) were removed to eliminate the impact of signal-controlled stops
on speed volatility (Wali et al., 2018). After obtaining the maneuver-
level speed volatility, their mean and maximum values were further
calculated to represent the average and extreme cases of speed volatility
at the intersection level. Thus, for each kind of maneuver (i.e., drive-
straight, left-turn, and right-turn), these speed volatility measures
were separately aggregated to capture their driving volatility.

(2) Hard events.

The count of hard events directly reflects the frequency of risky
driving behaviors at intersections and has been widely used to reflect the
potential risk level in recent traffic studies (Gu et al., 2023; Guo et al.,
2021; Han et al., 2024b; Zhang and Abdel-Aty, 2022). Based on the
identified risky driving behavior from the previous step, the counts of
hard braking and hard acceleration events were considered for the drive-
straight maneuvers. While for left-turn and right-turn maneuvers, the
lateral hard turning was counted separately to represent hard left turns
and hard right turns.

(3) Maneuver risky level: extreme acceleration

Although the count of hard events reflects the frequency of risky
driving behaviors, it heavily relies on the specific cut-off threshold. More
importantly, it loses the detailed acceleration information, making it fail
to measure the risk or severity level of each driving behavior (Han et al.,
2024b, 2024a; Kamrani et al., 2017). For instance, a behavior involving
high acceleration poses a greater likelihood of causing crashes compared
to one with low acceleration. To address this issue, the extreme accel-
eration observed in each maneuver was selected as an indicator of the
severity of potential crash risk. Specifically, the highest acceleration and
the lowest deceleration (negative acceleration) were extracted for all
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Fig. 5. Spatial matching of CV data within intersections and road buffer.

drive-straight, left-turn, and right-turn maneuvers. While the extreme
radial acceleration was only detected for left-turn and right-turn ma-
neuver. These metrics were then aggregated to the intersection level
using their mean, maximum, and sum values. It is noted that the sum of
such extreme acceleration can be regarded as a risk accumulation index
at an intersection, which offers two potential benefits. First, under stable
penetration rates (3-5 %), it is proportional to the intersection traffic
volume, serving as an indicator of exposure to crashes. Second, it can
sensitively capture the risk level under similar traffic conditions, as it
would significantly increase at intersections with frequent risky driving
behaviors compared to those with little risky driving activities.

Finally, a total of 34 intersection driving behavior features were
calculated from the CV trajectories as summarized in Table 4. Given that
the CV data spans D = 21 days, these features were first calculated for
each day, and their mean F; was then computed to ensure a stable rep-
resentation of the daily average intersection safety level:

— PR,
-t 2
where F; 4 is the driving behavior features F (e.g., hard braking) on day d
at intersection j. Detailed descriptive statistics of these micro-level fea-

tures are depicted in Table A2.

4. Methodology
4.1. Spatial machine learning framework

In the traditional GWR framework, model coefficient estimates are
allowed to vary across locations in order to address spatial heteroge-
neity. A simplified representation is:

Yi :ﬁ(ul,_vi)(Xi) + {:‘i,i =1:n (8-1)

P
ﬂ(ui.vi)(Xi) = ﬂo (ui7 vi) + Zkzlﬂk(uiv vi)xik (8-2)
where Y; is the dependent variable for the i th observation; (u;,v;) rep-
resents the spatial coordinate (e.g., longitude and latitude) of sample i;

T . . . .
X; = (xa,Xq, -, Xp)  is its vector of independent variables. g, =

[ﬂo(ui,vi), B (ui,vi), Py (i vi)} T is the vector of location-specific linear
parameters, including a local intercept g, (u;, v;) and coefficients g (ui, v;)
that vary with (u;,v;) to capture local spatial effects; ¢; is the random
error term. Clearly, GWR relies on the linear function given by Equation
(8)-(2) and therefore cannot estimate nonlinear relationships and
struggle to deal with high-dimensional inputs (Deng et al., 2020;
Georganos et al., 2021).

To address this issue, spatial ML framework is proposed to replace
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Fig. 6. Linear and radial acceleration calculation.

the GWR linear function to a nonlinear ML kernel:

Yi = ML(ul,vl) (X,) + E’i,i =1:n (9)

Where ML, ,, denotes a nonlinear ML model with varying parameters
at each spatial coordinate (u;,v;) to capture the local spatial effects. In
theory, ML, can be instantiated by any ML algorithm® without
requiring an explicit formula. For example, if the ML kernel is a random
forest, the framework becomes the GRF model (Georganos et al., 2021).
Similarly, it can easily incorporate other ML models, such as the
boosting-based XGBoost and LightGBM, which remain unexplored for
their spatial modeling performance. To fill this gap, the proposed spatial
ML framework integrates these different ML methods (e.g., RF, XGBoost,
and LightGBM) as basic models within a geographically weighted
framework. This flexibility enables researchers to select the most
effective learner for their data.

To implement this spatial ML framework for modeling datasets, the
processes of model fitting, testing, and interpretation are thoroughly

6 The code is available at GitHub: https://github.com/UCFLeiHan/Spatial-
ML.

described in the following sections.

4.1.1. Spatial ML fitting on train dataset

Fig. 9 illustrates the model fitting framework for integrating the ML
models within the GWR framework. In the spatial ML framework, a
global ML model is first trained using all samples to capture an unbiased
estimate of the average relationship for the entire region. However, such
relationships may vary across different spatial locations, forming the
spatial heterogeneity (Brunsdon et al., 1998; Deng et al., 2020). To
handle such issue, we assume that nearby samples are more likely to
share similar patterns according to the Tobler’s First Law of Geography
(Fotheringham et al., 2017). Consequently, for each spatial sample X;, a
local ML is further trained which only includes its nearby observations
within a specified distance (defined via bandwidth 1) to capture the
localized variations in the relationships. Finally, the prediction for
sample X; is obtained as a weighted combination of the predictions from
both global and local models:

Yi=aYi+(1-a)YVg 10

where Y; is the final prediction, y; and Y, are the predictions of the local
and global ML models, respectively. a is the local weight hyper-
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Fig. 7. Risky driving behavior identification with dynamic accelera-
tion thresholds.

parameter whose value in the range [0,1]. Our preliminary experiments
reveal that relying solely on local models often results in overfitting
specific training samples, thereby limiting their ability to generalize to
unseen data. The global model is necessary to capture overall unbiased
coefficients to overcome this issue (more detail can be found in Sun
et al.,, 2024). Overall, this approach enhances the ML models to be
calibrated locally rather than globally, thus effectively capturing
nonlinearity and simultaneously revealing spatial variations. As a result,
it can improve both the model predictive power and its ability to provide
localized explanations (Wu et al., 2024; Zhang et al., 2024).

Two hyperparameters, bandwidth 42 and local weight a, largely
impact model performance. For the 4, there are two types of bandwidths:
“fixed kernel” and “adaptive kernel” as shown in Fig. 10. In the fixed
kernel model, a bandwidth of N miles means selecting all neighbors
located within N miles of the target intersection. In the adaptive kernel
model, a bandwidth of N indicates that the N closest intersections are
used in fitting the local model. The limitation of the fixed kernel is that it
cannot capture enough samples when intersections are sparsely
distributed (e.g., suburban and rural areas), while adaptive kernel can
ensure a certain number of observations for fitting the local model.
Therefore, existing spatial models commonly adopted the adaptive
kernel to train the local models (e.g., Geographically weighted regres-
sion and Geographically weighted random forests in Gu et al., 2023; Wu
et al., 2024). For this reason, we adopted the adaptive kernel during
spatial modeling. Based on the finding of Sun et al. (2024), the optimal
bandwidth can be determined though an incremental spatial autocor-
relation test: the distance at which the z-score is the highest is used as

10
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bandwidth 4, and the global Moran’s I index at that distance is local
weight o

o {Moran sI, if Moran’sI > 0, andp < 0.05 an

0, otherwise

Specifically, Algorithm 1 provides the model fitting procedure of the
spatial ML model. Given the training set Q. and a ML algorithm (e.g.,
RF/XGBoost/LightGBM/...), a global ML is first fitted on all samples in
Qurain- Based on the spatial autocorrelation test on the targets (yl Y2,
Yn), the optimal bandwidth A and local weight a can be obtained. Then
for each sample (X;,y;), the neighboring samples within bandwidth A
would be chosen to train a local model (ML)). It is noted that during this
local training process, each neighbor sample is assigned a spatial weight
based on its distance to X; (dj), so that closer samples can show stronger
spatial influences on the local model. Here, the loss function #() of ML
is chosen as to mean squared error loss. Once the local ML is fitted, the
prediction of training sample y; can be calculated by combining the
predictions from its local ML (¥;) and global ML (¥,;). Finally, the spatial
ML framework consists of one global ML model (MLgobq) and n local ML
models (MLipcq = {ML;}}). The predicted targets Yain can be used for
model hyperparameter tuning to get the best spatial ML.
Algorithm 1: Pseudo algorithm of spatial ML fitting

Input:

Qirain: a set of n training samples including {(X1,y1), (X2,y2),, (Xa,¥a)}; ML: a pre-

initialized ML model (e.g., RF, XGBoost, LightGBM)

1: MLgopq+ train global ML given Qeain
2: Initialize MLjocqi<[]» Yerain [l
3: Calculate 2 and a « spatial autocorrelation test on (yl Y2, y,.)
4: for each (X;,y:) in Qeain do
5: Calculate distance dy«< (X;,X;)
6: Q;—{j|dj < 2} // select neighbors of X; within bandwidth 1
dj

2\ 2
7:wy = <1 - (7> > // calculate training weight of each neighbor jeQ;

8: ML; = argminzjEQ wyL (Xj, 0, yj) // train local ML using only neighbors jeQ;
0 1

9: Yii— MLi(X;), Ygi < MLglopal (Xi)

10:y; = a*yy + (1-a)*Yg

11: MLipeq- append(ML;), Y irain. append(¥;)

12: end for

Output:
MLgobq: the global ML model; MLyq: a set of n local ML models; ¥irain: @ set of n
predicted targets

4.1.2. Spatial-weighted prediction on test dataset

The well-trained spatial ML model can be used to make predictions
for unseen test datasets. In existing spatial studies (Georganos et al.,
2021; Gu et al., 2023; Wu et al., 2024), the local prediction for unseen
test data is typically made using the closest local ML model. However,
possible outliers within the closest local model can degrade its perfor-
mance. Meanwhile, other nearby ML models also offer valuable insights
for local prediction, yet are still overlooked in these spatial models. To
address these issues, a spatial-weighted ensemble prediction was uti-
lized as shown in Fig. 11(a). Instead of relying solely on the single
closest local ML model, this approach incorporates all local ML models
within the specified bandwidth, combining their predictions in a
spatially weighted manner:

Sy ML(x)
Yi=——— 12)
Zkeﬂjwkj

where yj; is the ensemble local prediction for the j th test sample X;, MLy
are the k th nearby local ML models within the bandwidth ; wy; is the
‘bisquare’ kernel spatial weight determined by the distance between
locations k and j as shown in Fig. 11(b) (Deng et al., 2020; Fotheringham
et al., 2017):
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Fig. 8. Intersection CV trajectories by three movement types.

Table 4
34 intersection driving behavior features.

Driving behavior features Maneuver categories

Drive-straight Left turn Right-

turn

Speed volatility Straight/left/right_speed_std_mean
Straight/left/right_speed_std_max

Hard braking/ Hard left Hard right
acceleration turn turn
Straight/left/right_acc_mean
Straight/left/right_acc_max
Straight/left/right_acc_sum
Straight/left/right dec_mean
Straight/left/right_dec_max
Straight/left/right_dec_sum

Left/
right_radial_acc_mean
Left/

right_radial acc_max
Left/

right radial_acc_sum

Hard events
Maneuver risky Acceleration
level: extreme
acceleration

Deceleration

Radial
acceleration

dg\*\’
Wy = <1 - (%) ) i <4 a3
Therefore, the predictions from closer local ML models are assigned

higher weights than those from farther away local ML models. Since this
spatially weighted local prediction combines the predictions from all

11

local ML models within the bandwidth, it is more robust and less sus-
ceptible to data outliers affecting a single local ML model.

4.1.3. Model interpretation with SHapley Additive exPlanations (SHAP)

Although Spatial ML can provide feature importances at both global
and local levels, it cannot determine whether the impact is positive or
negative. Therefore, we introduce the widely used SHAP framework to
both global and local MLs to quantify how each feature contributes to
the targets. The SHAP, proposed by Lundberg and Lee (2017), aims to
describe the performance of a machine learning model based on game
theory (Strumbelj and Kononenko, 2014) and local explanations
(Ribeiro et al., 2016). It offers an easy and effective measure to estimate
the feature contributions and has been widely utilized in machine
learning interpretation (Han et al., 2024a; Yu et al., 2024). Assume a ML
model where a group F (with n features) is used to predict an output. In
SHAP, the contribution of each feature to the model output f(F) is
allocated based on its marginal contribution (Lundberg and Lee, 2017).
The SHAP value @; of the i th feature is calculated through:

(IF| =18 = 1)!

I el ) a9

where S represents all feature subsets from F after removing the i th
SI'(FI=|S|=1)!
TA!

after feature permutation and combination. fs,;;, and fs represent the
model predictions with and without the i th feature, respectively, and xs
represents the values of the input features in the set S.

feature. represents the probability weight of S calculated
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values as shown in Table 5.

(a) Fixed kernel (b) Adaptive kernel To evalluate the prediction performance of candidate models, three
measures include the Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), and R? For these metrics, lower RMAE and MSE and
i ° i ° higher R? indicate better model prediction performance.
] ]
)
e © o e ©
)
Table 5
i The optimal model hyperparameters setting.
Models Hyperparameters Tuning range Selected
value
RF Number of 20, 50, 100, 200 100
Top N estimators
Maximum tree 10, 20, 30 20
depth
Maximum features ‘sqrt’, ‘log2’,’1/3' ‘1/3
XGboost, Objective function ‘squarederror’, ‘squarederror’
LightGBM ‘squaredlogerror’
. . . Learning rate 0.2, 0.1, 0.01, 0.001 0.1
Fig. 10. Two types of adaptive kernals for bandwidth. Number of 20. 50, 100, 200 50
estimators
4.2. Baselines and model evaluation metrics Maximum tree 10, 20, 30 20
depth
. MLP Layer number 1,2,4,6 2
To eva%uate t.he model performan?e of our propose:d spatial ML:, we Nodes of 1st, 2nd 16, 32, 64, 128 32816
selected five widely used models in existing studies as baselines: layer
Geographically Weighted Regression (GWR), RF, XGBoost, LightGBM, Loss function MSE, MAE, HuberLoss ~ MSE
and Multilayer Perceptron network (MLP). For these ML models, their Leafﬂir{g rate 5e-3, 1e-3, Se-4, le-4 le-4
hyperparameters are tuned using random grid search to get the optimal Batch size 32, 64, 128, 256 64
d. ;
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Fig. 11. Spatial-weighted prediction on test dataset.
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5. Results
5.1. Intersection crash spatial autocorrelation test

The prerequisite for spatial modeling is to confirm the presence of
spatial autocorrelation. Fig. 12(a) shows the spatial distribution of
intersection crashes, revealing clear spatial aggregation patterns in
downtown, urban, and suburban areas. Also, similar distribution trends
are observed along certain high-volume arterial roads. However, high-
crash intersections are primarily distributed in downtown and urban
areas with heavy traffic and dense human activity. In contrast, suburban
intersections exhibit lower crash frequencies and are more sparsely
distributed, demonstrating the complex spatial heterogeneity. To further
quantify their spatial autocorrelation and heterogeneity, the commonly
used indicator Moran’s I (Anselin, 1995) was applied:

N XIwii-(x-Y)
i ZJLWU Zf]()’l -y)?

Moran’s I = (15)

where N is the total number of intersections, y; denotes the observed
crash frequency in intersection i, and y is the mean crash frequency
across all intersections. The spatial weight wy is defined as the reciprocal
of the distance between intersections i and j. Accordingly, the z-score
can be calculated to represent the statistical significance of Moran’s I

o Crashes
° ° [ ] 25
° . 50
\ 100
8.1 ® 150
° ° 200
L ..
v 9.0
2 .
28.0 4 e
. L J
o
'g L ] L
g
-
219
:
L)
27.8 1
°
L <
27.71 ~
(C) OpenStreetMap contributors'
—82.6 —82.5 824 823 822 —82.1
Longitude
(a) Spatial distribution of intersection crashes
—e— Moran's [ —® = z-score
0.25
20
0.20
ran's I =0.11 B
15
S 0ls o
" 010 10
0.05 5
0.00

50 100 150 200 250 300 350
Bandwidth

(b) Moran’s I and z-score v.s. Bandwidth

o

Fig. 12. Spatial autocorrelation analysis results.
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compared to completely random distribution:

1

Moran’s I — E(I) _I_ {_N 1}

VVar  \/Var()

where E(I) and Var(I) represent the expectation and variance of Moran’s
I under the assumption that the intersection crash data are completely
randomly distributed. Fig. 12(b) illustrates the Moran’s I and their
corresponding z-score at different bandwidth. Moran’s I indexes are
consistently greater than 0 (p-value < 0.05), indicating the significantly
positive spatial clustering of intersection crashes. The z-score reaches
highest at bandwidth = 105, indicating that under this bandwidth the
spatial patterns of intersection crashes are most pronounced. In other
words, it can be seen as the optimal spatial scale that best explains the
spatial patterns of intersection crashes. The Z-score peak method has
been widely used to determine the best bandwidth in spatial analyses (e.
g., arcGIS) and modeling studies (Gedamu et al., 2024; Zheng et al.,
2024; Sun et al., 2024). Therefore, this band width of 105 was used in
our subsequent spatial ML models.

zZ — score =

(16

5.2. Model performance comparison

To compare model performance, 5-fold cross-validation was utilized
to mitigate the impact of random data partitioning and ensure reliable
performance estimation (Han et al., 2024b). To be specific, the entire
modeling dataset was partitioned into five equally sized subsets. In each
iteration, one-fold (20 %) is designated as the test set while the
remaining four folds (80 %) are used for training the model. This process
ensures that every data point is used for both training and testing exactly
once. The performance metrics from each iteration are then averaged to
provide a comprehensive assessment of model performance. Meanwhile,
two recent novel spatial MLs in traffic safety studies were also imple-
mented including the GWNN in Zhang et al. (2024) and GWCNNR in Li
et al., (2025). Table 6 presents the comparison of baselines between
three spatial ML models incorporating XGBoost, RF, and LightGBM.
Among these baselines, the GWR model performs the weakest, with the
highest RMSE (28.38 + 2.54), MAE (20.32 + 2.51), and the lowest R?
(0.576 + 0.12). Although GWR can account for potential spatial het-
erogeneity, it cannot fit the nonlinear dependencies between intersec-
tion crashes and impact factors. On the contrary, other ML models can
effectively capture such nonlinear correlations, thus demonstrating
better prediction performance. Among the baseline ML models, RF
provides the best prediction performance with an RMSE of 25.32 +
3.55, MAE of 17.73 + 2.48, and R? of 0.666 + 0.10. As expected, the
proposed spatial ML models achieve significantly improved prediction
performance compared to conventional ML models. Overall, the three
spatial ML models demonstrate significantly lower RMSE (<24.81) and
MAE (<16.93), with the R? improving to over 0.68 compared to baseline

Table 6
Model performance comparison between baselines and three spatial ML models.
Models RMSE* MAE* R2*
Non-spatial models
Baselines GWR 28.38 (2.54) 20.32 (2.51) 0.576 (0.12)
MLP 25.78 (2.69) 17.67 (2.38) 0.657 (0.08)
XGBoost 26.60 (3.57) 17.75 (2.28) 0.631 (0.11)
RF 25.32 (3.55) 17.73 (2.48) 0.666 (0.10)
LightGBM 25.96 (2.28) 17.88 (1.87) 0.646 (0.09)
Spatial models
GWNN (Zhang et al., 2024) 24.38 (2.80) 16.83 (1.62) 0.696 (0.05)
GWCNNR (Li et al., 2025) 25.33 (3.71) 17.08 (2.15) 0.701 (0.06)
Ours Spatial XGBoost 24.81 (2.62) 16.84 (1.89) 0.686 (0.05)
Spatial RF 24.17 (3.37) 16.93 (2.03) 0.701 (0.04)
Spatial LightGBM 23.85 (2.21) 16.62 (1.19) 0.703(0.04)

*: Values in parentheses represent the standard deviation of the metric across the

5-fold cross-validation.
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models. Notably, the spatial LightGBM model outperforms all other
models, achieving the lowest RMSE (23.85 + 2.21), MAE (16.62 £+ 1.19)
and highest R? (0.703 =+ 0.04). Compared to the best baseline model
(RF), it demonstrates improvements of 5.8 %, 6.3 %, and 5.6 % in RMSE,
MAE, and R2 respectively. Furthermore, compared to standard
XGBoost, LightGBM, and RF models, their spatial-version models ach-
ieved average improvements of 6.5 %, 5.6 % and 7.6 % in RMSE, MAE,
and R?, respectively. Both GWNN and GWCNNR achieved similar results
with our spatial MLs, indicating that integrating diverse MLs within
spatial modeling is a promising way to improve prediction performance.
Overall, the spatial LightGBM still achieved relatively better results with
smaller fluctuations (i.e., standard deviation).

Recent studies (Abdel-Aty et al., 2024; Cai et al., 2022; Wali et al.,
2018) have identified visual environment features and driving behavior
features as two key impact factors to intersection crashes, with the
former representing drivers’ visual perception and the latter reflecting
micro-level driving dynamics at intersections. To investigate the benefits
of introducing such emerging features, a set of ablation experiments
were conducted using the best spatial LightGBM, comprising four
different models:

1) Macro (base): Includes only the four macro-level features (i.e.,
traffic volume; geometric design, socioeconomic data, and road
context classifications).

2) Macro + V: Utilizes four macro-level features with visual environ-
ment features.

3) Macro + Lon D: Combines the four macro-level features with only
longitudinal driving behavior features (e.g., hard acceleration and
braking during drive-straight).

4) Macro + V + Full D: Incorporates the four types of macro-level
features with both visual environment and longitudinal and lateral
driving behavior features.

Ablation results in Fig. 13 show that the Macro model using only
macro-level features exhibits the highest RMSE (29.83), MAE (21.11),
and lowest R? (0.55). While introducing visual environment features,
the Macro + V model achieves lower RMSE (28.41), lower MAE (21.11),
and higher R? (0.59), indicating that drivers’ visual perception at in-
tersections also impacts their driving operations and safety (Xue et al.,
2024; Yue, 2024). Overall, the Macro + V + Full D performs best (RMSE
= 23.85, MAE = 16.62, and R% = 0.70). Compared to the Macro + Lon D,
it achieves a 9.2 % reduction in RMSE, a 6.5 % reduction in MAE, and a
7.7 % increase in R2. It highlights that beyond existing studies focusing
solely on longitudinal driving behaviors, the inclusion of lateral turning
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driving features (e.g., hard left/right turns) and visual environment
features enables capturing more driver’s risky driving interactions and
visual perception at intersections, thereby significantly enhancing the
crash prediction accuracy (Guo et al., 2021; Hu and Cicchino, 2020).

5.3. Model results interpretation

This section delves into the interpretation of the spatial LightGBM
model results. We first identify key influencing factors and their
nonlinear effects on the frequency of intersection crashes at the global
level (Section 5.3.1). Then, we examine the spatial heterogeneity of
these features at the local level, offering a comprehensive understanding
of their varying impact across different spatial locations (Section 5.3.2).
To account for randomness in model training, we fixed the random seed
at 42 (a common default), ensuring that feature interpretation results are
both reproducible and consistent.

5.3.1. Global level: Nonlinear effects of factors

In the spatial LightGBM model, the global LightGBM model provides
globally averaged estimates of the impact of features on intersection
crashes across all intersections. Fig. 14 visualizes the top 15 features
ranked by importance and their SHAP values. Among these, all 9 micro-
level driving behavior features show positive impact, with high values
(red points in Fig. 14) corresponding to positive SHAP values, high-
lighting the strong correlations between risky driving behaviors and
intersection crashes. Additionally, six macro-level features exhibit sig-
nificant impact, including two traffic volume indicators, two socioeco-
nomic features (the poverty ratio (P_poverty) and transit service
frequency (Transit_Services) within surrounding census tracts), and two
visual environment features (the vegetation and grass proportion in GSV
images).

(1) Driving behavior features

Fig. 15 compares the frequencies of intersection crashes and the
SHAP values for three key driving behavior features associated with
drive-straight, left-turn, and right-turn maneuvers. Based on the results,
the following conclusions can be drawn:

1) Drive-straight: The top contributing factor is the sum of extreme
accelerations during drive-straight maneuvers (Straight -
acceleration_sum), representing the daily cumulative risk of ac-
celeration behaviors within intersection areas. Fig. 15(a) shows a
clear positive correlation between this feature and intersection
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Fig. 13. Ablation experiment results.
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Fig. 14. Global-level feature importance ranking and their SHAP values (Top-15).

crashes, indicating that risky longitudinal accelerations may
reduce reaction time and cause dangerous gap distances with
front vehicles, strongly increasing the likelihood of crashes
(Azadani and Boukerche, 2022; Wali et al., 2018). Notably, these
impacts exhibit a nonlinear trend as shown in Fig. 15(b): when
the value is below approximately 700-800 m/s?, its SHAP values
remain negative, indicating limited impact on intersection
crashes. Conversely, if it exceeds this threshold (>800 m/sz),
corresponding SHAP value shifts positive and increases sharply,
meaning that a high cumulation of risky acceleration behaviors
would cause substantial impact to contribute to more crashes.

2) Left-turn: The extreme acceleration of left-turn maneuvers
(Left_acceleration_max) ranks as the fourth key factor. While less
influential than drive-straight features, it shows a significant
positive correlation with the intersection crash frequency (Fig. 15
(c)). It indicates that left-turn behaviors with high acceleration
may increase the potential of conflicts involving the left-turn and
opposing drive-straight vehicles (Appiah et al., 2020). Based on
its SHAP distribution in Fig. 15(d), its impact present nonlinear
trend: when the extreme acceleration is below 2.6-3.0 m/s, the
SHAP value remains negative, indicating minimal impact on
intersection crashes. While if it exceeds this threshold, the SHAP
value becomes positive and increases sharply to lead to more
crashes.

3) Right-turn: The daily count of hard right-turn events (Har-
d_Right_turn_count) is the sixth most important factor to exhibit a
positive impact on intersection crashes. Fig. 15(e) reveals the
positive correlation between this feature and the intersection
crash frequency. As noted by Potts et al. (2013), right-turn traffic
may lead to potential conflicts with vehicles in the turning di-
rection or opposing lanes. Hard right-turn behaviors may seri-
ously exacerbate these traffic conflicts, especially when drivers
fail to yield, thereby causing crashes. Similarly, its impact follows
a nonlinear trend as shown in Fig. 15(f): when the value is below
50, the SHAP value remains negative. However, once this
threshold is exceeded, the SHAP value becomes positive at high
levels (SHAP > 2.5), which would significantly increase inter-
section crash frequencies.

(2) Macro-level features
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Fig. 16 visualizes the SHAP values of four critical macro-level fea-
tures. For traffic volume, both the log-transformed AADT of major and
minor roads (Log_Major AADT and Log_Minor AADT) exhibit positive
and nonlinear correlations with crashes. Their SHAP values increase
sharply when these features exceed a threshold of 10 (i.e., 22,026 pcu/
day). It indicates that compared to low-traffic intersections, high traffic
on major or minor roads leads to more exposure to risky vehicle in-
teractions from different directions, thereby directly causing more
crashes. Within the socioeconomic features, the surrounding poverty
ratio (P_poverty) shows a positive correlation with intersection crashes,
indicating that these high-poverty areas may experience higher rates of
crashes than other areas, which need more attention for safety
improvement (Li et al., 2022; Patwary et al., 2024). For visual envi-
ronment features, the proportion of vegetation in intersection GSVs
shows a negative relationship with crashes. Intersections with high
vegetation coverage (5-10 %) have negative SHAP values, reflecting
potential benefits of vegetation to reduce crashes.

5.3.2. Local level: Spatial heterogeneity of factors

Unlike global models, which estimate the overall impact of factors
without considering their spatial variations, local models capture
distinct and location-specific relationships between these factors and
crashes to effectively reveal their spatial heterogeneity at each inter-
section. To further investigate such spatial heterogeneity, feature
importance across different intersections and their varying impact at the
intersection level are analyzed:

(1) Spatial distribution of feature importances

Taking the four types of hard driving events as an example, Fig. 17
presents the spatial distribution of their importances across different
intersections. Variable importance score is derived from each local
LightGBM model, reflecting the contribution of each variable to inter-
section crash frequency prediction. For the same variable, its importance
scores can vary between 0 (no contribution) and 1(full contribution)
across different intersection sites. A redder color indicates relatively
higher importance, while a greener color reflects lower importance.
Notably, the uneven distribution of point color highlights the evident
spatial dependency of crash frequency. From the results, we can
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Fig. 15. Scatter plots of intersection crash frequency and SHAP with driving behavior features.

conclude that:

1) Hard acceleration: Fig. 17(a) shows that most of the redder points

are primarily located in urban areas, suggesting that hard accelera-
tion events have a greater impact on crashes at urban intersections
compared to other regions (e.g., downtown or suburban areas). To
quantify the spatial differences of this feature, the model’s local
importance scores show that intersections in urban areas exhibit
higher scores between 0.05 and 0.24 (mean = 0.13), whereas other
areas range from 0.01 to 0.15 (mean = 0.03). This indicates that in
such urban areas, the importance of hard acceleration frequency is
nearly four times greater than other locations. In other words, hard
accelerations play a pivotal role in intersection crash frequency
prediction in the urban areas. Specifically, most of these urban in-
tersections are often situated on high-volume arterials, characterized
by larger sizes and higher speed limits. In over 75 % of these
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intersections, the speed limits of major roads are higher than that of
the minor roads— sometimes by as much as 10mph (e.g., 35mph on
the minor and 45mph on the major). This result reveals that in such
expansive intersections with high speed limit difference, drivers may
be more likely to riskily accelerate to reach higher speeds, thereby
significantly increasing the risk of crashes (Arvin et al., 2019; Wali
et al., 2018).

2) Hard braking: As shown in Fig. 17(b), the redder points are highly

concentrated in downtown residential areas, while green points are
distributed across the urban and suburban areas. It reveals that hard
braking is a significant contributor to crashes at downtown in-
tersections. The distribution of local importance scores indicates that
intersections in downtown areas exhibit values between 0.08 and
0.20 (mean = 0.15), while those in other areas range from 0.02 to
0.04 (mean 0.03). These quantitative results mean that
hard-braking frequency is roughly five times more influential in
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predicting intersection crashes in downtown areas than elsewhere.
This might be because these are highly dense street networks and
heavier roadside activities in downtown areas. For instance, inter-
section spacing in these downtown zones is typically 150-250 m,
which is significantly less than that of urban (300-350 m) and sub-
urban area (800-100 m). Moreover, higher traffic and human ac-
tivities are presented in this area. As a results, such traffic
environment makes drivers need to brake frequently when
approaching intersections (Dumbaugh et al., 2023; Xie et al., 2014),
making hard braking events more likely to occur to become a pri-
mary risky issue for crashes (Gu et al., 2023).

3) Hard left-turn: Unlike the spatial patterns of hard acceleration and
braking events, Fig. 17(c) illustrates the redder points of hard left-
turn events are mainly distributed at specific urban and suburban
areas. The local important scores in these urban and suburban in-
tersections range from 0.06 to 0.27, with an average of 0.14—nearly
seven times higher than the average score in other areas (0.02). This
highlights the substantial spatial variation in the impact of hard left-
turn behavior on intersection crash frequency. Specifically, these
points are mainly located at intersections along with specific main
arterials or freeways. This indicates that these intersections may
have more turning traffic exiting from high-volume roadways, thus
causing more left-turn conflicts with other direction vehicles. CV
data confirm that the ratio of left-turn traffic accounts for 33-39 % of
the total volume at these intersections, higher than the average level
(25.2 %). As a result, risky left-turn behaviors could lead to crashes
with a higher probability in these intersections.

4) Hard right-turn: The redder points of hard right-turn events are
distributed in the southern and northern suburban areas without a
specific spatial pattern as shown in Fig. 17(d). For most intersections,
the local importance scores of hard right turns are less than 0.01,
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indicating a relatively minor effect on intersection crashes. However,
in these southern and northern suburban intersections, these scores
rise significantly to 0.10-0.20, suggesting a greater impact of risky
hard right turns on crash occurrences in these regions. This indicates
that risky right-turn behavior is a more significant issue to lead to
crash on these suburban highways and arterials. Therefore, con-
trolling such risky turning behaviors can be an effective way to
reduce crashes for suburban intersection management (Hu and Cic-
chino, 2020).

(2) Case studies: feature impact at high-crash intersections

Fig. 18 depicts an urban intersection with a speed limit of 45 mph on
the major road. Based on crash records, the pie chart shows the ratio of
major crash types at this intersection, with rear-end crashes accounting
for the majority (63 %). The model SHAP values in red shapes represent
each feature’s contribution to the estimated crash numbers (f(x)), indi-
cating how many crashes deviate from the average level (E[f(x)]). The
results show that the crashes at this intersection are mainly driven by the
longitudinal acceleration driving features (e.g., the count of hard ac-
celeration and the sum of extreme accelerations of drive-straight ma-
neuvers (Straight_acceleration_sum)). A lot of hard acceleration events
are observed at the four exit approaches of the intersection, meaning
that drivers would accelerate rapidly upon exiting the intersection,
largely leading to more rear-end crashes. Meanwhile, risky right-turn
behaviors (e.g., Right_acceleration_max) and risky left-turn behaviors
(e.g., Left_acceleration_max) also show critical contributions and are
estimated to increase by 28.1 and 20.6 crashes, respectively. These
lateral turning events are also recorded at these exit approaches, which
may result in frequent conflicts between such turning and drive-straight
vehicles, thus leading to sideswipe and other types of crashes.

Fig. 19 is an example of a large-size suburban intersection with speed
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Fig. 17. Spatial distribution of importance scores of four hard event features.

limit of 50 mph on the major road. In this intersection, sideswipe and
left-turn crashes are the main concerns, accounting for 44 % of the total
crashes. Results show that risky left-turn behaviors are the primary
contributing factor of crashes. Specifically, more than 388 hard left-turn
events are identified daily, and 70.1 crashes are estimated to be attrib-
uted to left-turn features (e.g., the sum of extreme accelerations during
left-turn maneuvers, Left acceleration_sum), highlighting a significant
safety concern regarding left-turn movements. Another safety issue is
that risky acceleration during drive-straight maneuvers (Straight -
acceleration_sum) contributes to an increase of 43 crashes compared to
the average level. Due to the high speed limit, drivers tend to accelerate
to reach the speed limit or beyond. Thus, a lot of hard acceleration
events occurred along the road, which may lead to rear-end crashes.
Meanwhile, a significant number of hard right-turn events are also
recorded, contributing to about 17 crashes.

6. Discussion
6.1. Crash contributing factors comparison

In general, the overall relationship between macro-level contributing
factors and intersection crash frequency is consistent with previous

studies (Cai et al., 2018; Park et al., 2020; Pulugurtha and Sambhara,
2011; Yue, 2024). For example, as the most important traffic exposures
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for crashes, both the AADT of major and minor roads are found to have a
strong positive correlation with crash frequency, which is consistent
with existing studies (Cai et al., 2018; Xue et al., 2024; Yue, 2024). The
surrounding poverty ratio (P_poverty) is found to show a positive cor-
relation with intersection crashes. Li et al. (2022) and Patwary et al.
(2024) also found that high poverty areas have a statistically significant
higher crash frequency than other areas. Interestingly, the visual envi-
ronment feature—the proportion of vegetation at intersections—shows
a negative relationship with crashes, also echoing with recent studies by
Abdel-Aty et al., 2024; Cai et al., 2022; and Yue, 2024. They found that
roadside vegetation may make drivers feel a narrow road and exercise
more caution, thereby reducing speeding, distracted driving, and
crashes.

As for the micro-level crash contributing factors, this study reveals
several distinctive patterns linking risky driving behaviors with inter-
section crash frequency:

1) Nonlinear impacts of risky driving behaviors on intersection crashes
commonly exist. For example, the daily cumulative risk of acceler-
ation behaviors is identified as the leading contributor to intersection
crashes. While its impact remains low under a certain threshold
(<1000 m/s?), exceeding this threshold causes the corresponding
SHAP value to turn positive and increase sharply, leading to a
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Fig. 18. Case study 1: Urban high-crash intersection.

substantial rise in crashes. Similar nonlinear effects are also found in
Gu et al., (2023).
2) Compared to models that only use longitudinal driving behaviors,

important implications and safety countermeasures can be derived for
intersection safety practices and policies.

—

models further considering lateral left and right turning behaviors
achieve superior predictions. The model interpretation also shows
that several lateral driving behavior features (e.g., the extreme ac-
celeration of left-turn maneuvers, daily count of hard right-turn
events) are significantly positively associated with crash frequency.
All these results highlight the critical role of lateral turning maneu-
vers for intersection crash modeling.

Local models in spatial ML reveal pronounced spatial heterogeneous
relationships between risky driving behavior features and crashes
across different intersections. Findings indicate that in downtown
areas with dense street networks, hard braking events are more likely
to occur and become a primary risk factor for crashes. While for
urban areas, drivers may be more likely to risky accelerate to reach
high speed limit, thereby significantly increasing the risk of crashes.
At some suburban intersections, left-turn traffic may experience
significant conflicts with vehicles traveling in other directions,
highlighting the need for further risky-turn managements to enhance
safety.

6.2. Potential safety countermeasures and policies

Based on the main findings as discussed at Section 6.1, several

(1) Pay more attention to improving intersection safety at high-
volume, underdeveloped communities: The results show that
the intersection traffic and poverty ratio of communities sur-
rounding intersections is positively correlated with intersection
crashes. It indicates that such areas always have heavy traffic and
more low-income population suffer more crashes and safety issue,
which need increased attention and government support. For
example, future transportation plans and policies should priori-
tize developing or maintaining road infrastructure to enhance
safety in these underdeveloped communities.

(2) Coordinated signal timing in urban areas to reduce hard braking
and acceleration at intersections: It is found that most in-
tersections in urban and urban-core areas experience frequent
hard braking and acceleration events, leading to frequent rear-
end crashes. Therefore, implementing coordinated signal timing
on major arterials may be an effective way to reduce stop-and-go
traffic, thereby decreasing abrupt acceleration and braking ma-
neuvers. Additionally, lowering the speed limits at locations with
high rates of hard acceleration—for example, reducing from 45
mph to 40 mph or 35 mph—may discourage rapid acceleration
and enhance overall safety.
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(3) Implement protected left/right-turn signals at suburban in-
tersections with frequent hard turns: Several suburban in-
tersections exhibit high proportions of left-turn and sideswipe
crashes, driven primarily by frequent hard left/right turning
maneuvers. To improve safety at these locations, consider adding
or extending protected left- and right-turn signal phases to avoid
potential conflicts. Additionally, implementing the “No Right-
turn on Red” restriction can also reduce conflicts between right-
turning and through traffic, thereby lowering the incidence of
right-turn related crashes.

7. Conclusion

Existing studies have developed both statistical and machine
learning models to identify factors contributing to intersection crashes
(Kamrani et al., 2017; Wali et al., 2018). However, due to data limita-
tion, previous studies have focused on macro-level static infrastructure
and highly aggregated traffic features, ignoring the influence of micro-
level human driving behaviors on intersection crashes (Gu et al,
2023; Wang et al., 2021). Leveraging emerging CV data, some studies
have explored the impact of longitudinal driving behaviors (e.g., hard
acceleration and braking) on intersection crashes, but critical lateral
behaviors like left and right turns have largely been overlooked (Hunter
et al., 2021). In terms of modeling approaches, existing studies have
mainly integrated spatial effects into statistical methods to account for
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complex spatial heterogeneity (Li et al., 2022). These models, however,
rely heavily on the linear assumptions, resulting in poor prediction
performance and difficulties in handling high-dimensional traffic data
(Zhou et al., 2023).

To address the first research gap, we divided intersection CV tra-
jectories into drive-straight, left-turn, and right-turn movements.
Driving behavior features at both longitudinal (e.g., hard braking and
acceleration) and lateral turning (e.g., hard left and right turn) ma-
neuvers were identified to capture the micro-level driving dynamics
within intersections. To overcome modeling limitations, we proposed a
novel spatial ML framework integrating nonlinear ML models (e.g., RF,
XGBoost, and LightGBM) with geographically weighted regression.
High-resolution CV data at Hillsborough County were utilized for ex-
periments. Based on the empirical results, two key insights can be
concluded:

1) The inclusion of risky turning driving features (e.g., hard left/right
turns) enables capturing more lateral driving interactions to enhance
intersection crash prediction. For instance, risky left-turn behaviors
with high acceleration rank as the 4th most important feature with
positive association with intersection crashes. It indicates that such
risky left-turn behaviors may increase potential conflicts between
left-turn vehicles and other traffic streams, thus undermining inter-
section safety.



L. Han and M. Abdel-Aty

2) Spatial heterogeneity of micro driving behaviors reveals that in-
tersections at different locations experience different risky-driving
behavior issues. In downtown, hard braking events primarily influ-
ence intersection crashes. Drivers’ hard acceleration is more likely to
lead to rear-end crashes in urban areas, aligning with findings in Gu
et al. 2023. In contrast, at suburban intersections with high left-turn
volume, hard left turns show greater influence on sideswipe and left
turn crashes. By pinpointing intersections with risky left/right turn
behaviors, it can provide new actionable insights for traffic man-
agement and targeted safety interventions.

The proposed method can be used for intersection safety evaluation
and management. On the one hand, even short-term CV data enables
researchers to proactively identify hotspot intersections where crashes
are waiting to happen. These hotspots may be those intersections with
low crash frequency but high risky driving events (Kamrani et al., 2017;
Wang et al., 2024c). On the other hand, utilizing V2X communication,
proactive warnings could be generated at these high-risk intersections to
inform drivers about potential hazards, which could enhance drivers’
situational awareness and prevent crashes (Arvin et al.,, 2019; Chen
et al., 2024). Nonetheless, there are still a few limitations in the current
study. First, the current study was based on a specific region. Future
research should consider testing the model in diverse geographic con-
texts to evaluate its generalizability. Second, the penetration of CV data
may vary across different intersections, which would potentially affect
the feature values and further affect the local model performance. Third,
within the CV dataset, over 53 % of vehicles are multipurpose passenger
vehicles (e.g., SUV, Vans, and Minivans), 31.5 % are large-size pickup
trucks, and 15.3 % are sedans. Regarding fuel type, 91.8 % run on
gasoline, 7 % on diesel, and only 1.2 % are electric vehicles (EVs).
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Although these results indicate that the CV dataset comprises a variety of
vehicle types, the proportion of EVs is relatively small in the Hills-
borough area, which may introduce sampling bias if the method is
applied directly to regions with high EV penetration (e.g., Shanghai or
Beijing). Finally, short-time CV data were used in this study, yet inter-
section driving behaviors may have changed over the studied period.
Due to data limitations, existing studies typically collected CV data over
a limited duration (e.g., 1-3 months) (Arvin et al., 2019; Hunter et al.,
2021; Joshi et al., 2024). It is necessary to collect more extensive CV
data to examine the temporal stability of driving behaviors and their
correlations with crashes.
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Appendix

Table Al

Descriptive Statistics of the target and macro-level variables.
Variable Definition Min Max Mean STD
Crashes Crashes per intersection from June 2021 to May 2024 0 240 49.32 44.72
Traffic volume
Log_Major AADT The log value of AADT on major road in 2021-2023 (pcu) 6.11 11.18 9.79 0.86
Log_Minor AADT The log value of AADT on minor road in 2021-2023 (pcu) 5.30 10.89 8.90 0.90
Log_Major_TruckAADT The log value of truck AADT on major road in 2021-2023 (pcu) 3.56 9.01 7.18 0.88
Log_Minor_TruckAADT The log value of truck AADT on minor road in 2021-2023 (pcu) 2.77 8.56 6.36 0.91
Geometric design
Legs 4 4-legged (yes = 1) 0 1 0.73 0.45
Major_lanes Major road lanes > 4 (yes = 1) 0 1 0.20 0.40
Minor_lanes Minor road lanes > 4 (yes = 1) 0 1 0.02 0.14
Major_speed_low Speed limit on major road < 40 mph (yes = 1) 0 1 0.38 0.49
Major_speed_medium Speed limit on major road in 40-50 mph (yes = 1) 0 1 0.59 0.49
Major_speed_high Speed limit on major road > 50 mph (yes = 1) 0 1 0.03 0.18
Minor_speed_low Speed limit on minor road < 40 mph (yes = 1) 0 1 0.66 0.47
Minor_speed_medium Speed limit on minor road in 40-50 mph (yes = 1) 0 1 0.34 0.47
Minor_speed_high Speed limit on minor road > 50 mph (yes = 1) 0 1 0.00 0.06
Major_surface_width The surface width of major road (feet) 13 96 43.19 17.21
Minor_surface_width The surface width of minor road (feet) 12 69 31.23 10.83
Major_minor_collector Major road class is minor collector (yes = 1) 0 1 0.02 0.14
Major_major_collector Major road class is major collector (yes = 1) 0 1 0.24 0.43
Major_minor_arterial Major road class is minor arterial (yes = 1) 0 1 0.35 0.48
Major_major_arterial Major road class is major arterial (yes = 1) 0 1 0.39 0.49
Minor_minor_local Minor road class is local road (yes = 1) 0 1 0.02 0.13
Minor_minor_collector Minor road class is minor collector (yes = 1) 0 1 0.20 0.40
Minor_major_collector Minor road class is major collector (yes = 1) 0 1 0.56 0.50
Minor_minor_arterial Minor road class is minor arterial (yes = 1) 0 1 0.19 0.40
Minor_major_arterial Minor road class is major arterial (yes = 1) 0 1 0.04 0.19
Major_median_marking The median type of major road is a traffic marking (yes = 1) 0 1 0.53 0.50
Major_median_separator The median type of major road is a raised traffic separator (yes = 1) 0 1 0.28 0.45
Major_median_curb The median type of major road is curb and vegetation (yes = 1) 0 1 0.13 0.34
Minor_median_marking The median type of major road is a traffic marking (yes = 1) 0 1 0.71 0.45

(continued on next page)
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Variable Definition Min Max Mean STD
Minor_median_separator The median type of minor road is a raised traffic separator (yes = 1) 0 1 0.18 0.39
Minor_median_curb The median type of minor road is curb and vegetation (yes = 1) 0 1 0.09 0.29
Socioeconomic variables
Population Average population (1000 people) 0.59 10.66 4.06 1.41
Median_Income Average median income (10000%) 1.28 15.07 5.79 2.52
P_Over65 Percent of population 65 years or older (%) 2.87 78.74 13.57 4.94
P_Underl7 Percent of population 17 years or younger (%) 0.42 37.70 19.65 7.17
P_Unemployed Percent of people age 16 + unemployed (%) 0 14.60 3.73 1.95
P_Poverty Percent of population with income below average poverty level (%) 0.72 74.02 37.56 15.38
P_Uneducation Percent of people age 25 + with less than a high school diploma (%) 0.51 41.90 14.51 7.84
P_Disability Percent of population with a disability (%) 3.19 62.10 13.30 4.49
P_Mobile_Homes Percent of total housing units that are mobile homes (%) 0 79.10 4.79 9.94
P_Nocar Percent of households with no car (%) 0 35.17 10.46 7.46
Commute_Time Average commute time to work (min) 7.77 39.08 25.09 4.48
Transit_Services Frequency of Transit Services per Sq Mi 0 293.02 26.98 36.41
Road context classifications
C3R Intersection at suburban residential area (yes = 1) 0 1 0.20 0.40
C3C Intersection at suburban commercial area (yes = 1) 0 1 0.14 0.35
C4 Intersection at urban general area (yes = 1) 0 1 0.42 0.49
C5 & C6 Intersection at urban center area (yes = 1) 0 1 0.08 0.27
Visual environment features
Sidewalk Proportion of sidewalk area within the intersection GSV images (%) 0 7.44 1.44 1.22
Grass Proportion of grass or terrain within the intersection GSV images (%) 0 20.36 2.09 2.12
Vegetation Proportion of vegetation (e.g., tree, grass) within the intersection GSV images (%) 1.11 34.60 8.43 4.90
Road Proportion of road within the intersection GSV images (%) 16.67 45.80 41.05 3.43
Buildings Proportion of buildings within the intersection GSV images (%) 0 36.31 4.34 6.33
Vehicle Proportion of vehicles within the intersection GSV images (%) 0 29.94 2.08 2.33
Sky Proportion of sky visible within the intersection GSV images (%) 9.06 47.00 37.80 7.25

Table A2

Descriptive Statistics of the micro-level driving behavior variables.
Variable Definition Min Max Mean STD
Speed volatility
Straight_speed_std_mean Mean of speed standard deviation of drive-straight trajectories (m/s) 2.36 9.45 5.62 1.12
Left speed_std_mean Mean of speed standard deviation of left-turn trajectories (m/s) 2.97 8.91 6.12 1.26
Right_speed_std_mean Mean of speed standard deviation of right-turn trajectories (m/s) 1.85 8.54 6.22 1.18
Straight_speed_std_max Maximum of speed standard deviation of drive-straight trajectories (m/s) 11.43 29.03 19.62 3.45
Left_speed_std_max Maximum of speed standard deviation of left-turn trajectories (m/s) 7.24 25.57 15.15 2.58
Right_speed_std_max Maximum of speed standard deviation of right-turn trajectories (m/s) 4.36 24.12 15.54 2.96
Hard events
Hard braking Number of hard braking at intersection per day 0 120.19 25.14 25.63
Hard acceleration Number of hard accelerations at intersection per day 0 239.57 37.98 40.35
Hard left turning Number of hard left turn at intersection per day 0 388.81 43.28 57.50
Hard right turning Number of hard right turn at intersection per day 0 334.24 33.42 48.16
Risky maneuver with extreme accelerations
Straight_acc_mean Mean of acceleration of drive-straight trajectories (m/s?) 0.24 1.34 0.78 0.17
Left_acc_mean Mean of acceleration of left-turn trajectories (m/sz) 0.37 1.48 1.12 0.23
Right_acc_mean Mean of acceleration of right-turn trajectories (m/s%) 0.33 1.56 1.11 0.24
Straight_acc_max Maximum of acceleration of drive-straight trajectories (m/s%) 1.64 5.47 3.49 0.48
Left_acc_max Maximum of acceleration of left-turn trajectories (m/sz) 1.45 3.68 2.67 0.46
Right_acc_max Maximum of acceleration of right-turn trajectories (m/s%) 0.57 3.97 2.80 0.51
Straight acc_sum Sum of acceleration of drive-straight trajectories (m/s?) 31.27 3075.24 725.57 503.28
Left_acc_sum Sum of acceleration of left-turn trajectories (m/s?) 8.49 884.49 177.70 159.04
Right_acc_sum Sum of acceleration of right-turn trajectories (m/s?) 1.12 954.57 179.29 157.04
Straight_dec_mean Mean of deceleration of drive-straight trajectories (m/s) 0.26 1.61 0.85 0.21
Left_dec_mean Mean of deceleration of left-turn trajectories (m/s?) 0.11 1.04 0.42 0.16
Right_dec_mean Mean of deceleration of right-turn trajectories (m/s) 0.17 1.46 0.81 0.21
Straight_dec_max Maximum of deceleration of drive-straight trajectories (m/s%) 2.41 5.88 3.94 0.57
Left dec_max Maximum of deceleration of left-turn trajectories (m/s%) 1.20 3.72 2.47 0.39
Right_dec_max Maximum of deceleration of right-turn trajectories (m/s?) 0.52 4.07 2.84 0.51
Straight_dec_sum Sum of deceleration of drive-straight trajectories (m/s?) 38.16 2381.07 725.79 429.43
Left dec_sum Sum of deceleration of left-turn trajectories (m/s%) 5.14 643.55 54.51 47.15
Right_dec_sum Sum of deceleration of right-turn trajectories (m/s?) 1.46 638.96 129.77 115.18
Left_radial_acc_mean Mean of radial acceleration of left-turn trajectories (m/s?) 1.01 3.05 2.23 0.37
Right_radial acc_mean Mean of radial acceleration of right-turn trajectories (m/s%) 0.71 2.81 2.10 0.35
Left_radial_acc_max Maximum of radial acceleration of left-turn trajectories (m/. s%) 2.87 8.83 4.94 0.88
Right_radial_acc_max Maximum of radial acceleration of right-turn trajectories (m/s?) 1.02 7.84 4.68 0.74
Left_radial_acc_sum Sum of radial acceleration of left-turn trajectories (m/s?) 15.92 2061.77 357.37 325.46
Right_radial_acc_sum Sum of radial acceleration of right-turn trajectories (m/s?) 2.11 1888.46 349.25 320.00
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