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A B S T R A C T

Existing intersection safety analysis studies have primarily focused on macro-level static infrastructure and 
highly aggregated traffic features. The emergence of Connected Vehicle (CV) has enabled researchers to extract 
micro-level driving behavior attributes from CVs. Although longitudinal driving behaviors (e.g., hard braking) 
have been studied recently, critical lateral left and right turn behaviors, which are common and pose potential 
conflict risk at intersections, have been largely overlooked. Meanwhile, dealing with both spatial heterogeneity 
and nonlinear effects between crash frequency and multitudinous driving features is another critical challenge 
for intersection safety analysis. To address such gaps, this study extracted driving behavior features for both 
longitudinal movements and lateral left and right turns to comprehensively capture driving dynamics at in
tersections. A novel spatial ML framework was proposed to integrate nonlinear ML models (e.g., LightGBM) with 
geographically weighted regression: Besides a global ML model training on all samples to fit average estimations, 
distinct local ML models are trained for each spatial sample with its neighbors to capture localized spatial 
heterogeneity. Empirical experiments using CV data at a Florida county show that the inclusion of lateral turning 
behavior (e.g., hard left/right turns) leads to improved accuracy of intersection crash frequency prediction. 
Compared to traditional Rrandom Forest, XGBoost, LightGBM, and Multilayer Perceptron models, the spatial ML 
integrating LightGBM demonstrates significant improvements of 5.8%, 6.3%, and 5.6% in RMSE, MAE, and R2, 
respectively. The results reveal the nonlinear impact of driving features and their spatial heterogeneity: In 
downtown, hard braking events primarily influence the risk of rear-end (RE) crashes. Drivers’ acceleration also is 
more likely to lead to RE crashes in urban areas. While hard left turns show greater influence of sideswipe and 
left turn crashes at suburban intersections.

1. Introduction

Intersections have been recognized as crash-prone locations within 
the urban traffic network due to the complex vehicle movements, 
multimodal interactions, and conflicts from different approaches. In the 
United States, more than 25 % of traffic fatalities and 50 % of traffic 
injuries occur at or near intersections each year (FHWA, 2024). In 2022, 
42,514 traffic fatalities were recorded, of which 12,036 involved 
intersections—accounting for 28.3 % of all fatalities, causing a signifi
cant toll on people’s lives and property (FHWA, 2024). Consequently, 
enhancing intersection safety is a critical step toward saving human lives 
and realizing Vision Zero (USDOT). To achieve this goal, extensive ef
forts have been dedicated to intersection crash frequency modeling and 

safety evaluation (Gu et al., 2023; Kabir et al., 2021; Yuan and 
Abdel-Aty, 2018). Specifically, researchers have identified various 
contributing factors (e.g., intersection traffic, geometric design, etc.) 
and employed statistical and machine learning (ML) models to assess 
their impacts on intersection crash frequency (Kabir et al., 2021; Lee 
et al., 2023b), therefore providing valuable insights for traffic engineers 
to implement targeted countermeasures to reduce intersection crashes 
(Wang et al., 2024a; Wu et al., 2023; Wang et al., 2025).

However, previous studies mainly relied on macro-level infrastruc
ture and traffic features, barely considering micro-level human driving 
behaviors. Crashes—particularly within intersection areas—are mainly 
caused by drivers’ risky driving behavior and failure to interact appro
priately with other vehicles (Han et al., 2024a,b; Shirazi and Morris, 
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2017). Compared to macro features describing road traffic environment, 
micro driving behaviors inherently capture risky driving motions and 
interactions, which are more closely related to intersection crashes (Gu 
et al., 2023). Leveraging emerging high-resolution Connected Vehicle 
(CV) data, recent studies started to extract micro driving features and 
examine their impact on intersection crashes (Gu et al., 2023; Hunter 
et al., 2021; Kamrani et al., 2018). While these studies highlighted key 
impacts of risky driving behaviors on intersection crashes, they have 

primarily focused on longitudinal behaviors (e.g., hard acceleration and 
braking). In reality, vehicles at intersection engage in both longitudinal 
(e.g., driving straight) and lateral (e.g., left/right turn) interactions. 
Critical lateral driving behaviors—such as hard left and right turn
s—exhibit distinct patterns from longitudinal actions (e.g., car- 
following) to capture risky lateral interactions related to vehicle safety 
(Sander, 2017; Shirazi and Morris, 2017). For instance, a vehicle 
executing a hard left turn can often sideswipe an oncoming vehicle. If 

Fig. 1. Overall workflow of this study.

L. Han and M. Abdel-Aty                                                                                                                                                                                                                     Accident Analysis and Prevention 220 (2025) 108180 

2 



the oncoming vehicle brakes hard to avoid the collision, it may in turn be 
rear-ended by trailing traffic. Therefore, it is important to incorporate 
such risky turning maneuvers into intersection safety analysis. However, 
existing studies either overlooked these turning maneuvers or mixed 
them with longitudinal behaviors, making it difficult to assess their 
impact on intersection safety and introducing potential estimation bia
ses. To the best of our knowledge, no existing study has yet analyzed 
risky driving behaviors specific to critical lateral turning movements and 
established their relationship with intersection crash frequencies.

For intersection crash frequency modeling, spatial approaches have 
emerged as a primary focus for addressing the spatial heterogeneity 
issue in crash analysis (Arvin et al., 2019; Tang et al., 2020; Wang et al., 
2024). Various spatial statistical methods have been developed 
including random parameter models (Lee et al., 2023a,b; Wang et al., 
2024b), spatial lag models (Hong et al., 2016), and geographically 
weighted regression (GWR) (Li et al., 2022). Although existing spatial 
statistical methods can capture complex spatial heterogeneity well, they 
still strongly rely on the linear relationship assumption and struggle with 
the high-dimensional traffic datasets (Wen et al., 2021; Zhou et al., 
2023). To address such limitation, recent studies have shifted toward 
exploring integration spatial heterogeneity effects into ML frameworks 
as ML models are significantly effective in modeling nonlinear and 
high-dimensional datasets (Fan et al., 2023a; Wen et al., 2022; Zhou 
et al., 2023). For example, the Geographical Random Forest (GRF) 
model, which integrates Random Forest (RF) into geographically 
weighted model, has been employed to account for spatial heterogeneity 
and achieved notable prediction accuracy in recent traffic safety 
modeling (Wu et al., 2024; Wang et al., 2024). However, the potential of 
integrating other ML methods (e.g., XGBoost and LightGBM), known for 
robust nonlinear fitting capabilities, into spatial modeling has yet to be 
investigated (Sigrist, 2023). Therefore, developing novel spatial ML 
approaches that can capture both nonlinear effects and spatial hetero
geneity in intersection crash modeling remains to be further 
investigated.

To address the aforementioned research gaps, this study aims to 
extract multiple risky driving behavior features at intersections and 
capture their nonlinear effects and spatial heterogeneity on intersection 
crashes. The overall workflow of this study is shown in Fig. 1. First, 
multiple macro-level features are extracted from open-source traffic and 
street view data, and micro-level driving behavior features are identified 
from county-scale CV data. Second, these features are fed into the pro
posed novel spatial ML framework for model testing and interpretation. 
Finally, the experimental analysis focuses on model performance, 
identifying crash-critical factors, and examining their spatial 
heterogeneity.

Overall, the main contributions of this paper include: 

1) Identifying high risk driving behavior features for both longitudinal 
(e.g., hard braking and acceleration) and lateral turning (e.g., hard 
left and right turn) movements from CV trajectories to analyze their 
impact on intersection crashes.

2) Proposing a spatial ML framework that integrates multiple ML 
models (e.g., RF, XGBoost and LightGBM) with geographically 
weighted regression to account for spatial heterogeneity in inter
section crash frequency modeling.

Following this, section 2 reviews related literature and section 3
details data preparation. Section 4 shows the proposed methodology and 
section 5 illustrates the experiment results. The discussion and conclu
sion of this study are presented in Section 6 and 7, respectively.

2. Literature review

2.1. CV-data-based intersection driving behavior features

Benefiting from the development of vehicle connectivity 

technologies, it is now possible to obtain micro-level driving behavior 
features from high-resolution CV data to reflect detailed driving in
teractions within intersections. Table 1 summarizes the existing inter
section crash studies considering driving behavior features from CV 
datasets. For instance, a group of studies have utilized CV data from the 
Safety Pilot Model Deployment (SPMD) Program to extract several 
driving volatility measures (e.g., standard deviation, coefficient of 
variation of speed and longitudinal acceleration) and link them with 
intersection crash frequencies (Arvin et al., 2019; Hu et al., 2020; 
Kamrani et al., 2018; Wali et al., 2018). Similarly, Hunter et al. (2021)
leveraged hard-braking events from Wejo CV data to predict rear-end 
crash frequency, indicating a strong correlation between these events 
and crashes.

Although these studies highlighted key impacts of risky driving be
haviors on intersection crashes, existing features have primarily focused 
on longitudinal behaviors (e.g., hard acceleration and braking). While 
some studies have incorporated lateral accelerations, they simply 
aggregated these features at the overall intersection level without dis
tinguishing specific vehicle movements (e.g., left/right turn) (Arvin 
et al., 2019; Gu et al., 2023). However, left- and right-turn behaviors at 
intersections exhibit distinct interaction patterns with surrounding 
traffic (Sander, 2017; Shirazi and Morris, 2017), yet are still overlooked. 
From a traffic management perspective, it is more important to identify 
safety issues at the level of specific vehicle movements rather than high- 
aggregated lateral behavior measures. For instance, frequent hard left- 
turn maneuvers may serve as a strong indicator of angle and left-turn 
crashes—insights that cannot be obtained from existing aggregated 
analyses. Therefore, there is still a research gap on capturing risky 
lateral left and right turning behaviors and examining their impacts on 
intersection crash frequencies.

2.2. Intersection crash frequency spatial modeling

Spatial heterogeneity has emerged as a critical concern in intersec
tion crash analysis, reflecting how the effect of the same factor on 
crashes varies across different spatial contexts (e.g., intersection in city, 
urban, and rural areas). To address such issue, spatial statistical methods 
such as spatial-lag models (Cui et al., 2024; Hong et al., 2016), Bayesian 
spatial models (Wang et al., 2023), and geographically weighted 
regression (GWR) (Brunsdon et al., 1998; Tang et al., 2020) have been 
developed to capture complex spatial heterogeneity. However, as these 
models fundamentally rely on linear assumptions, they struggle to es
timate the inherent nonlinear relationships between the outcome vari
able and contributing factors (Han et al., 2024a; Wu et al., 2024). 

Table 1 
Existing intersection crash studies with CV-based driving behavior features.

Studies CV 
datasets

Driving behavior features Crash 
types

Kamrani et al. 2017 SPMD Longitudinal accelerations Rear-end
Wali et al. 2018 SPMD Longitudinal acceleration/ 

jerk, standard deviation of 
speed

All 
crashes

Arvin et al. 2019 SPMD Longitudinal & lateral 
acceleration/jerk, standard 
deviation of speed

Rear-end, 
head-on

Hunter et al. 2021 Wejo Hard braking events Rear-end
Mohammadnazar 

et al. 2022
SPMD Longitudinal & lateral 

acceleration, standard 
deviation of speed

All 
crashes

Gu et al. 2023 SPMD Longitudinal & lateral 
acceleration, yaw rate, 
standard deviation of speed

Rear-end

Current study Streetlight Longitudinal: Driving-straight 
speed, acceleration, 
deceleration 
Lateral: hard left and right- 
turn, radial acceleration

All 
crashes
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Moreover, these models discard highly correlated factors to prevent 
overfitting, which could lead to the loss of potential critical information 
within high-dimensional datasets (Zhai et al., 2025; Zhao et al., 2024).

To address the limitations of statistical models, notable efforts have 
been made to integrate spatial heterogeneity effects into ML in recent 
safety studies as summarized in Table 2. Among them, the Geographical 
Random Forest (GRF) model proposed by Georganos et al. (2021) is the 
most popular one, which establishes local RFs for each sample and its 
spatial neighbors to account for spatial heterogeneity. Several studies 
have utilized GRF in recent traffic safety modeling and achieved better 
predictive accuracy and interpretability (Wu et al. 2024; Wang et al. 
2024). However, RF may underperform on high-dimensional dataset 
(Do et al., 2010; Nguyen et al., 2015; Qu et al., 2019), which limits the 
predictive performance of GRF. Although a few studies have attempted 
to integrate neural networks into spatial modeling, these approaches 
also face challenges such as high computational cost and unstable 
training on small-size data (Goel et al., 2023). In contrast, boosting- 
based models (e.g., XGBoost and LightGBM) excel at nonlinear fitting 
for high-dimensional data and demonstrate high computational effi
ciency. Therefore, they have been widely utilized and achieved strong 
performance in recent traffic research (Li et al., 2023; Yang et al., 2021). 
Nevertheless, the potential of combining such ML models with spatial 
modeling has not been explored (Sigrist, 2023). It is worthwhile inves
tigating such novel spatial ML approaches to account for both spatial 
heterogeneity and nonlinear effects in intersection crash frequency 
modeling.

3. Data preparation

In this study, we initially identified 612 signalized intersections at 
Hillsborough County using the FDOT Geographic Information System.1

After excluding 111 sites with missing data (e.g., lacking traffic AADT 
data or census‑tract socioeconomic data), a total of 501 intersections 
were finally selected. For each intersection, five kinds of macro-level 
features were extracted: (a) traffic volume, (b) intersection geometric 
design, (c) socioeconomic characteristics, (d) road context classifica
tions, and (e) visual environment features. In terms of micro-level fac
tors, multiple driving behavior features were extracted from the high- 
resolution CV data. The collective time frame of macro-level features 

is fixed for 2024 to match the duration of the CV data (Jan 3–13 and Jan 
30-Feb 8, 2024). To mitigate the randomness of short-time crash 
recording, three-year crash data (June 2021 to May 2024) are utilized to 
better reflect the safety level at intersections (Desai et al., 2021; Hunter 
et al., 2021; Wali et al., 2018). The details of each data processing are 
elaborated on in the following sections.

3.1. Intersection crash identification

The crash data were obtained from the Florida Signal Four Analytics 
(S4A) system.2 Each record includes precise crash time, location, colli
sion type and severity, the number of vehicles involved, and other 
pertinent details. According to the S4A system, crashes that occur within 
250 ft of the stop line are defined as “intersection-related crashes”. Thus, 
within-intersection and intersection-related crashes were first identified, 
encompassing various vehicle-vehicle crash types (e.g., rear-end, side
swipe, left/right-turn, etc.). Referring to existing studies (Avelar et al., 
2015; Kabir et al., 2021), an 80-ft spatial buffer around the centerline of 
intersection approaches was also created to ensure that the matched 
crashes did not occur in surrounding buildings or parking lots. Finally, a 
total of 24,707 intersection crashes were identified, and some examples 
are presented in Fig. 2.

3.2. Macro-level features matching

(1) Traffic volume and intersection geometric design.
From the FDOT Geographic Information System,3 the average annual 

daily traffic (AADT) of all vehicles and large vehicles (e.g., truck, bus) on 
intersection major and minor roads were calculated. These features 
reflect intersection traffic volume as crash exposure as well as consid
ering the impact of large vehicles. The geometric design of intersection 
approaches can also be obtained from the RCI system. For example, the 
posted speed limit is available for each roadway, allowing this infor
mation to be matched with the major and minor approaches at the in
tersections. Finally, a total of 26 geometric design features were 
extracted as shown in Table A1.

(2) Socioeconomic Data.
Socioeconomic data reflect the regional economic and demographic 

characteristics surrounding the intersection. To extract such features, 
census-tract-level socioeconomic features (e.g., average median income, 
population) were derived from the USDOT Equitable Transportation 
Community (ETC) Project.4 Since one intersection may be near multiple 
census tracts, a 0.5-mile buffer (Avelar et al., 2015; Cai et al., 2018) was 
created around each intersection. Socioeconomic features from the 
census tracts that spatially overlapped with this buffer were aggregated 
to each intersections. A weighted average was utilized as suggested by 
existing studies (Huang et al., 2017; Pulugurtha and Sambhara, 2011). 
As an example, the average population variable Ei for the intersection 
buffer i can be calculated: 

Ei =
∑

j

Aj,i

Aj
*Ej (1) 

where Ej is the population of census tract j, Aj,i is the area of census tract j 
within buffer i, and Aj is the area of the census tract j.

(3) Road context classifications.
Considering that traffic patterns vary significantly between urban, 

suburban, and rural areas, the context classifications of roadways were 
obtained from the Florida Land Use & Infrastructure Plan.5 Based on the 

Table 2 
Existing spatial ML methods in traffic safety studies.

Model Model innovations Potential limitations

Geographical RF 
(Georganos et al., 2021; 
Gu et al., 2023; Wu 
et al., 2024)

Develop a global RF 
model for all samples and 
multiple local RF models 
for each sample with its 
spatial neighbors to 
capture spatial 
heterogeneity

RF models may 
underperform on high- 
dimensional dataset

XGBoost with geographic 
coordinates 
(Zhao et al., 2025)

Incorporate geographic 
coordinates (latitude and 
longitude) as inputs into 
the XGBoost model

Cannot capture spatial 
dependencies among 
input factors

Geographically Weighted 
Neural Network 
(GWNN) 
(Zhang et al., 2024)

Establish local Neural 
Network (NN) for each 
sample and its spatial 
neighbors

NN training needs longer 
computation time and 
may be unstable on small 
datasets

Geographically weighted 
convolutions neural 
network regression 
(GWCNNR) 
(Li et al., 2025)

Estimate spatial weights 
using CNN and then 
multiplied into the 
regression coefficients in 
the ordinary linear 
regression

Separately fit spatial and 
non‑spatial features may 
ignore their interactions

1 https://www.fdot.gov/statistics/gis/default.shtm.

2 https://signal4analytics.com.
3 https://www.fdot.gov/statistics/gis/default.shtm.
4 https://www.transportation.gov/priorities/equity/justice40/etc-explorer.
5 https://hcfl.gov/government/county-projects/land-use-and-infrastructure- 

studies/land-use-and-infrastructure-other-publications.
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surrounding land use, roadways were divided into six categories (e.g., 
C3C for suburban commercial areas, C4 for urban areas, as shown in 
Table A1). Recent research indicates that the traffic patterns and safety 
are quite different among these roadway classifications (Al-Omari et al., 
2021; Mahmoud et al., 2021). Therefore, it is essential to combine such 
features in intersection crash frequency modeling.

(4) Visual Environment Features.
Typically, the proportions of environmental objects in street-view 

images are utilized to reflect drivers’ visual perception of their sur
roundings (e.g., grass indicating open space, vehicles representing 
traffic density, etc.). Using Google Maps API, the center point was 
identified as the viewpoint origin of street view images for each inter
section. Following existing studies (Cai et al., 2022; Xue et al., 2024; 
Yue, 2024), 8 Google Street View (GSV) images were obtained at 
headings ranging from 0◦ (north) to 315◦(northwest) to fully capture the 
entire intersection environment (Fig. 3(a)). It is noted that intersections 
undergoing construction were excluded to ensure a stable environment 
during the study period. Images at intersection center offer a more 
comprehensive view, whereas perspectives from individual travel di
rections often face obstructions from vehicles blocking other elements 
(e.g., buildings and trees). Finally, a total of 8*501 = 4008 GSV images 
were collected. To qualify for visual environment features in GSV im
ages, Segmenter, a transformer-based segmentation model, was 
employed to pixel-level objects classification (over 90 % reported clas
sification accuracy). A total of 7 types of objects in GSV images were 
labeled as shown in Fig. 3(b) (e.g., sidewalk, grass, vegetation, road, 
building, sky, and vehicle). Other types of elements (e.g., pedestrian, 
bicycle, animals, etc.) are excluded from the analysis, as they typically 
occupy a small pixel proportion and are often missed in most samples as 
suggested by Liu et al. (2025). Referring to existing studies (Abdel-Aty 
et al., 2024; Cai et al., 2022; Fan et al., 2023b), the pixel proportions of 
each object were calculated as visual environment features. Overall, 
detailed descriptive statistics of these macro-level features are depicted 
in Table A1.

3.3. Intersection driving behavior features extraction

In this study, the CV data are provided by StreetLight. It contains 3- 
second-interval vehicle trajectories collected from original equipment 
manufacturers (OEMs) using vehicle-to-cloud communication. Given 
that the fleet is composed of multiple types of non-commercial vehicles, 
it can better represent the vehicles on the roadways (Zhang and Abdel- 
Aty, 2022). The data includes journey ID, capture time, GPS location, 
heading, and speed as described in Table 3. The data spans two distinct 

periods: Jan 3–13 and Jan 30-Feb 8. On average, it includes over 
4,692,975 CV trajectory points per day, derived from 154,997 journeys, 
providing full coverage of Hillsborough County with high market 
penetration of 4.17 %, as shown in Fig. 4.

3.3.1. Spatial matching of CV data with intersections
Fig. 5(a) presents the spatial matching workflow of CV trajectory 

data with intersections. To ensure data quality, erroneous CV data were 
filtered out following the criteria of speed > 100 mph or updated time 
interval > 5 s. Using the intersection and road GIS data, a joined spatial 
buffer was created consistent with those used in the crash matching: a 
250-ft buffer was applied to identify CV points within the intersections 
and their approaches. An 80-ft buffer from the centerline of intersection 
roads was generated to exclude CV data not located on the roads (i.e., 
gray points outside the buffer are in a nearby parking lot in Fig. 5(b)). 
Through the spatial joining between the CV data and intersection spatial 
buffer, the final spatially matched CV data for each intersection were 
obtained.

3.3.2. Identification of longitudinal and lateral risky driving behaviors
Risky driving behaviors refer to instantaneous driving actions 

involving abnormal vehicle operations (e.g., extreme acceleration or 
braking), which may lead to heavy surrounding traffic volatility and 
even crashes (Wali et al., 2018). Previous studies have identified risky 
longitudinal behaviors (e.g., hard acceleration and braking) based on 
the longitudinal/linear acceleration (Gu et al., 2023; Hunter et al., 
2021). However, within the intersection area, drivers always encounter 
hard left turns, right turns and other lateral risky driving behaviors when 
navigating to another roadway direction. Therefore, based on the CV 
trajectories, we calculated both linear and radial accelerations, and thus 
identified risky longitudinal driving behaviors (hard acceleration and 
braking) as well as lateral driving behaviors (hard right turn and left 
turn).

(1) Linear and radial acceleration calculations.
Fig. 6(a) shows the calculation of both linear and radial acceleration 

based on CV point. Mathematically, a CV trajectory point can be written 
as Pt = (Xt ,Vt , θt), where Xt = (latt , lont) is the GPS location, Vt is the 
speed, and θt is the travel heading at time t. Therefore, consider two CV 
points during turning maneuver: the earlier point Pt0 = (Xt0,Vt0, θt0) at 
time t0 and the subsequent point Pt1 = (Xt1,Vt1, θt1) at time t1. The 
linear acceleration can be easily calculated: 

LinearACCt1 =
ΔV
Δt

=
Vt1 − Vt0

t1 − t0
(2) 

Fig. 2. Examples of crashes in the intersection buffers.
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As for the radial acceleration (a.k.a centripetal acceleration), it describes 
the acceleration of an object moving along a curved path directed to
ward the center of its trajectory. Thus, we need to first determine the 
turning radius r: 

r =
d/2

sin(Δθ/2)
whered = Euclideandistance(Xt1,Xt0),Δθ = |θt1 − θt0| (3) 

Then, the radial acceleration can be calculated: 

RadialACCt1 =
V
r2 =

(Vt1 + Vt0)/2
r2 (4) 

Based on the above formulas, both linear and radial acceleration can be 
derived from the raw CV trajectory data. For example, Fig. 6(b)-(d) 

Fig. 3. The illustration of visual environment features extraction from GSV images.

Table 3 
Description of the raw CV data parameters.

Parameters Description Unit

Journey ID Unique identifier for a trip (from ignition start to end). −

Capture time 10-digit UTC timestamp s
Latitude North-South position of the vehicle −

Longitude East-West position of the vehicle −

Heading The heading of the vehicle travel. (e.g., 0: North; 90: East) ◦

Speed Speed of the vehicle at the instant the datapoint was 
captured

mph
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show the speed, linear and radial acceleration of an entire trip, respec
tively. Clearly, the linear acceleration can reflect the acceleration (blue 
points in Fig. 6(c)) and braking (red points in Fig. 6(c)) situations. While 
at intersections, the radial acceleration increases significantly to effec
tively capture the left and right turning behaviors.

(2) Risky driving behavior identification with dynamic thresholds.
Risky driving behaviors are often identified as extreme outliers in 

terms of acceleration. For instance, if the linear acceleration exceeds a 
certain threshold, it is classified as “hard acceleration”. Most existing 
studies applied a fixed threshold across all speed conditions (Guo et al., 
2022, 2021; Han et al., 2024b; Hunter et al., 2021). However, the 
capability of a vehicle to accelerate/decelerate varies significantly at 
different speeds, i.e., at higher speeds the possible minimum decelera
tion values are considerably smaller than those observed at lower 
speeds. To overcome such limitation, a dynamic threshold approach 
proposed by Wali et al. (2018) was adopted in this study. Specifically, a 
series of 5mph speed bins (i.e., 0-5mph, 5-10mph, …70-75mph) were 
first defined. Within each speed bin, the 3 σ rule was used to identify 
these extreme acceleration outliers by calculating the upper bound 
following existing studies (Gu et al., 2023; Wali et al., 2018): 

ACC thresholdk = μk +3*σk (5) 

where μk and σk represent the mean and the standard deviation of ac
celeration within the respective speed bin k. Therefore, it ensures that 
thresholds can be dynamically adjusted according to speed considering 
the vehicle performance. However, as some speed bins contained 
insufficient samples, the resulting thresholds were inconsistent (e.g., the 
threshold at the 5–10 mph bin was lower than that for 10–15 mph). To 
address such cases, we fixed the thresholds for speeds below 15 mph at 
2.50 m/s2 for hard acceleration and –2.75 m/s2 for hard deceleration. 
For speeds above 60mph, we set the thresholds to 0.71 m/s2 for hard 
acceleration and –0.64 m/s2 for hard deceleration. For the radial ac
celeration, we set the thresholds to 3.40 m/s2 for speed bin of 0–10 mph 
and 1.52 m/s2 for speed bin > 35mph. Using this approach, risky driving 
behaviors at intersections can be identified as shown in Fig. 7. Fig. 7(a) 
shows the linear acceleration distribution across different speed bins, 
with two threshold curves: the positive curve identifies hard accelera
tion events, while the negative curve captures hard braking events. Since 
radial acceleration is inherently positive, a single threshold curve was 

established to identify hard turning, as shown in Fig. 7(b). These turning 
events are further categorized into hard right turns and hard left turns in 
subsequent analyses.

3.3.3. Calculation of intersection driving behavior features
Considering different vehicle movements at intersections, CV tra

jectories were further categorized into three types: drive-straight, left- 
turn, and right-turn as shown in Fig. 8. Compared to the drive-straight 
maneuvers, lateral turning maneuvers exhibit distinct spatial patterns 
and movement interactions. For the right-turn maneuver (Fig. 8 (a)), 
they are predominantly distributed around the outer parts of in
tersections. In contrast, left-turn maneuvers occupy the inner intersec
tion area, often overlapping with movements in other directions (Fig. 8
(b)). However, existing studies typically either solely rely on longitu
dinal driving features or utilize the aggregated speed or acceleration 
measures of the whole maneuvers, largely overlooking the distinctive 
driving behaviors and interactions with other vehicles in lateral turning 
maneuvers. To address this limitation, multiple driving behavior fea
tures were calculated based on the three movement categories—drive- 
straight, left-turn, and right-turn—to comprehensively capture risky 
driving behaviors.

(1) Speed volatility.
Speed volatility is widely used to measure the variations in instan

taneous driving, which is highly associated with aggressive drivers and 
unsafe outcomes (e.g., crashes and conflicts) (Kamrani et al., 2018; Wali 
et al., 2018; Yu et al., 2021). Referring to existing studies (Wali et al., 
2018), the standard deviation of speed was calculated to reflect the 
driving volatility at intersections. First, at the maneuver level, the speed 
standard deviation (STD Speedi) for the i-th maneuver can be calculated 
as follows: 

STD Speedi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑T

t

(
Vi,t − Vi,t

)2

T

√
√
√
√
√

(6) 

where Vi,t and Vi,t are the speed at timepoint t and the mean speed over 
the i-th maneuver. T is the total number of timepoints recorded during 
the i-th maneuver at the intersection buffer. Here, stop points (speed =
0mph) were removed to eliminate the impact of signal-controlled stops 
on speed volatility (Wali et al., 2018). After obtaining the maneuver- 
level speed volatility, their mean and maximum values were further 
calculated to represent the average and extreme cases of speed volatility 
at the intersection level. Thus, for each kind of maneuver (i.e., drive- 
straight, left-turn, and right-turn), these speed volatility measures 
were separately aggregated to capture their driving volatility.

(2) Hard events.
The count of hard events directly reflects the frequency of risky 

driving behaviors at intersections and has been widely used to reflect the 
potential risk level in recent traffic studies (Gu et al., 2023; Guo et al., 
2021; Han et al., 2024b; Zhang and Abdel-Aty, 2022). Based on the 
identified risky driving behavior from the previous step, the counts of 
hard braking and hard acceleration events were considered for the drive- 
straight maneuvers. While for left-turn and right-turn maneuvers, the 
lateral hard turning was counted separately to represent hard left turns 
and hard right turns.

(3) Maneuver risky level: extreme acceleration
Although the count of hard events reflects the frequency of risky 

driving behaviors, it heavily relies on the specific cut-off threshold. More 
importantly, it loses the detailed acceleration information, making it fail 
to measure the risk or severity level of each driving behavior (Han et al., 
2024b, 2024a; Kamrani et al., 2017). For instance, a behavior involving 
high acceleration poses a greater likelihood of causing crashes compared 
to one with low acceleration. To address this issue, the extreme accel
eration observed in each maneuver was selected as an indicator of the 
severity of potential crash risk. Specifically, the highest acceleration and 
the lowest deceleration (negative acceleration) were extracted for all 

Fig. 4. CV data spatial distribution (January 30, 2024 as an example).
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drive-straight, left-turn, and right-turn maneuvers. While the extreme 
radial acceleration was only detected for left-turn and right-turn ma
neuver. These metrics were then aggregated to the intersection level 
using their mean, maximum, and sum values. It is noted that the sum of 
such extreme acceleration can be regarded as a risk accumulation index 
at an intersection, which offers two potential benefits. First, under stable 
penetration rates (3–5 %), it is proportional to the intersection traffic 
volume, serving as an indicator of exposure to crashes. Second, it can 
sensitively capture the risk level under similar traffic conditions, as it 
would significantly increase at intersections with frequent risky driving 
behaviors compared to those with little risky driving activities.

Finally, a total of 34 intersection driving behavior features were 
calculated from the CV trajectories as summarized in Table 4. Given that 
the CV data spans D = 21 days, these features were first calculated for 
each day, and their mean Fj was then computed to ensure a stable rep
resentation of the daily average intersection safety level: 

Fj =

∑D
d Fj,d

D
(7) 

where Fj,d is the driving behavior features F (e.g., hard braking) on day d 
at intersection j. Detailed descriptive statistics of these micro-level fea
tures are depicted in Table A2.

4. Methodology

4.1. Spatial machine learning framework

In the traditional GWR framework, model coefficient estimates are 
allowed to vary across locations in order to address spatial heteroge
neity. A simplified representation is: 

Yi = β(ui ,vi)
(Xi)+ εi, i = 1 : n (8-1) 

β(ui ,vi)
(Xi) = β0(ui, vi)+

∑p

k=1
βk(ui, vi)xik (8-2) 

where Yi is the dependent variable for the i th observation; (ui, vi) rep
resents the spatial coordinate (e.g., longitude and latitude) of sample i; 
Xi =

(
xi1, xi2,⋯, xip

)T is its vector of independent variables. β(ui ,vi)
=

[
β0(ui, vi), β1(ui, vi),⋯βp(ui, vi)

]T is the vector of location-specific linear 
parameters, including a local intercept β0(ui, vi) and coefficients βk(ui, vi)

that vary with (ui, vi) to capture local spatial effects; εi is the random 
error term. Clearly, GWR relies on the linear function given by Equation 
(8)–(2) and therefore cannot estimate nonlinear relationships and 
struggle to deal with high-dimensional inputs (Deng et al., 2020; 
Georganos et al., 2021).

To address this issue, spatial ML framework is proposed to replace 

Fig. 5. Spatial matching of CV data within intersections and road buffer.

L. Han and M. Abdel-Aty                                                                                                                                                                                                                     Accident Analysis and Prevention 220 (2025) 108180 

8 



the GWR linear function to a nonlinear ML kernel: 

Yi = ML(ui ,vi)(Xi)+ εi, i = 1 : n (9) 

Where ML(ui ,vi) denotes a nonlinear ML model with varying parameters 
at each spatial coordinate (ui, vi) to capture the local spatial effects. In 
theory, ML(ui ,vi) can be instantiated by any ML algorithm6 without 
requiring an explicit formula. For example, if the ML kernel is a random 
forest, the framework becomes the GRF model (Georganos et al., 2021). 
Similarly, it can easily incorporate other ML models, such as the 
boosting-based XGBoost and LightGBM, which remain unexplored for 
their spatial modeling performance. To fill this gap, the proposed spatial 
ML framework integrates these different ML methods (e.g., RF, XGBoost, 
and LightGBM) as basic models within a geographically weighted 
framework. This flexibility enables researchers to select the most 
effective learner for their data.

To implement this spatial ML framework for modeling datasets, the 
processes of model fitting, testing, and interpretation are thoroughly 

described in the following sections.

4.1.1. Spatial ML fitting on train dataset
Fig. 9 illustrates the model fitting framework for integrating the ML 

models within the GWR framework. In the spatial ML framework, a 
global ML model is first trained using all samples to capture an unbiased 
estimate of the average relationship for the entire region. However, such 
relationships may vary across different spatial locations, forming the 
spatial heterogeneity (Brunsdon et al., 1998; Deng et al., 2020). To 
handle such issue, we assume that nearby samples are more likely to 
share similar patterns according to the Tobler’s First Law of Geography 
(Fotheringham et al., 2017). Consequently, for each spatial sample Xi, a 
local ML is further trained which only includes its nearby observations 
within a specified distance (defined via bandwidth λ) to capture the 
localized variations in the relationships. Finally, the prediction for 
sample Xi is obtained as a weighted combination of the predictions from 
both global and local models: 

ŷi = α*ŷli +(1 − α)*ŷgi (10) 

where ̂yi is the final prediction, ̂yli and ̂ygi are the predictions of the local 
and global ML models, respectively. α is the local weight hyper

Fig. 6. Linear and radial acceleration calculation.

6 The code is available at GitHub: https://github.com/UCFLeiHan/Spatial- 
ML.
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parameter whose value in the range [0,1]. Our preliminary experiments 
reveal that relying solely on local models often results in overfitting 
specific training samples, thereby limiting their ability to generalize to 
unseen data. The global model is necessary to capture overall unbiased 
coefficients to overcome this issue (more detail can be found in Sun 
et al., 2024). Overall, this approach enhances the ML models to be 
calibrated locally rather than globally, thus effectively capturing 
nonlinearity and simultaneously revealing spatial variations. As a result, 
it can improve both the model predictive power and its ability to provide 
localized explanations (Wu et al., 2024; Zhang et al., 2024).

Two hyperparameters, bandwidth λ and local weight α, largely 
impact model performance. For the λ, there are two types of bandwidths: 
“fixed kernel” and “adaptive kernel” as shown in Fig. 10. In the fixed 
kernel model, a bandwidth of N miles means selecting all neighbors 
located within N miles of the target intersection. In the adaptive kernel 
model, a bandwidth of N indicates that the N closest intersections are 
used in fitting the local model. The limitation of the fixed kernel is that it 
cannot capture enough samples when intersections are sparsely 
distributed (e.g., suburban and rural areas), while adaptive kernel can 
ensure a certain number of observations for fitting the local model. 
Therefore, existing spatial models commonly adopted the adaptive 
kernel to train the local models (e.g., Geographically weighted regres
sion and Geographically weighted random forests in Gu et al., 2023; Wu 
et al., 2024). For this reason, we adopted the adaptive kernel during 
spatial modeling. Based on the finding of Sun et al. (2024), the optimal 
bandwidth can be determined though an incremental spatial autocor
relation test: the distance at which the z-score is the highest is used as 

bandwidth λ, and the global Moran’s I index at that distance is local 
weight α: 

α =

{
Moran’s I, if Moran’s I > 0, and p < 0.05

0, otherwise (11) 

Specifically, Algorithm 1 provides the model fitting procedure of the 
spatial ML model. Given the training set Ωtrain and a ML algorithm (e.g., 
RF/XGBoost/LightGBM/…), a global ML is first fitted on all samples in 
Ωtrain. Based on the spatial autocorrelation test on the targets 

(
y1,y2,⋯,

yn
)
, the optimal bandwidth λ and local weight α can be obtained. Then 

for each sample 
(
Xi, yi

)
, the neighboring samples within bandwidth λ 

would be chosen to train a local model (MLi). It is noted that during this 
local training process, each neighbor sample is assigned a spatial weight 
based on its distance to Xi (dij), so that closer samples can show stronger 
spatial influences on the local model. Here, the loss function L () of ML 
is chosen as to mean squared error loss. Once the local ML is fitted, the 
prediction of training sample ŷi can be calculated by combining the 
predictions from its local ML (ŷli) and global ML (ŷgi). Finally, the spatial 
ML framework consists of one global ML model (MLglobal) and n local ML 
models (MLlocal = {MLi}

n
i ). The predicted targets ŷtrain can be used for 

model hyperparameter tuning to get the best spatial ML.
Algorithm 1: Pseudo algorithm of spatial ML fitting

Input: 
Ωtrain: a set of n training samples including {(X1 , y1), (X2, y2),⋯,

(
Xn, yn

)
}; ML: a pre- 

initialized ML model (e.g., RF, XGBoost, LightGBM)

1: MLglobal← train global ML given Ωtrain

2: Initialize MLlocal←[]n, ŷtrain←[]n 

3: Calculate λ and α ← spatial autocorrelation test on 
(
y1,y2,⋯,yn

)

4: for each 
(
Xi, yi

)
in Ωtrain do

5: Calculate distance dij←
(
Xi,Xj

)

6: Ωi←
{
j
⃒
⃒dij < λ

}
// select neighbors of Xi within bandwidth λ

7: wij =

(

1 −

(
dij

λ

)2
)2 

// calculate training weight of each neighbor j∊Ωi

8: MLi = argmin
θ

∑

j∊Ωi
wijL

(
Xj , θ, yj

)
// train local ML using only neighbors j∊Ωi

9: ŷli← MLi(Xi), ŷgi←MLglobal(Xi)

10:ŷi = α*ŷli + (1 − α)*ŷgi

11: MLlocal. append(MLi), ŷtrain. append(ŷi)
12: end for
Output: 

MLglobal: the global ML model; MLlocal: a set of n local ML models; ŷtrain: a set of n 
predicted targets

4.1.2. Spatial-weighted prediction on test dataset
The well-trained spatial ML model can be used to make predictions 

for unseen test datasets. In existing spatial studies (Georganos et al., 
2021; Gu et al., 2023; Wu et al., 2024), the local prediction for unseen 
test data is typically made using the closest local ML model. However, 
possible outliers within the closest local model can degrade its perfor
mance. Meanwhile, other nearby ML models also offer valuable insights 
for local prediction, yet are still overlooked in these spatial models. To 
address these issues, a spatial-weighted ensemble prediction was uti
lized as shown in Fig. 11(a). Instead of relying solely on the single 
closest local ML model, this approach incorporates all local ML models 
within the specified bandwidth, combining their predictions in a 
spatially weighted manner: 

ŷlj =

∑
k∈Ωj

wkj*MLk
(
Xj
)

∑
k∈Ωj

wkj
(12) 

where ŷlj is the ensemble local prediction for the j th test sample Xj, MLk 

are the k th nearby local ML models within the bandwidth λ; wkj is the 
‘bisquare’ kernel spatial weight determined by the distance between 
locations k and j as shown in Fig. 11(b) (Deng et al., 2020; Fotheringham 
et al., 2017): 

+ 3

+ 3

Fig. 7. Risky driving behavior identification with dynamic accelera
tion thresholds.
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wkj =

(

1 −

(
dkj

λ

)2
)2

, dkj ≤ λ (13) 

Therefore, the predictions from closer local ML models are assigned 
higher weights than those from farther away local ML models. Since this 
spatially weighted local prediction combines the predictions from all 

local ML models within the bandwidth, it is more robust and less sus
ceptible to data outliers affecting a single local ML model.

4.1.3. Model interpretation with SHapley Additive exPlanations (SHAP)
Although Spatial ML can provide feature importances at both global 

and local levels, it cannot determine whether the impact is positive or 
negative. Therefore, we introduce the widely used SHAP framework to 
both global and local MLs to quantify how each feature contributes to 
the targets. The SHAP, proposed by Lundberg and Lee (2017), aims to 
describe the performance of a machine learning model based on game 
theory (Štrumbelj and Kononenko, 2014) and local explanations 
(Ribeiro et al., 2016). It offers an easy and effective measure to estimate 
the feature contributions and has been widely utilized in machine 
learning interpretation (Han et al., 2024a; Yu et al., 2024). Assume a ML 
model where a group F (with n features) is used to predict an output. In 
SHAP, the contribution of each feature to the model output f(F) is 
allocated based on its marginal contribution (Lundberg and Lee, 2017). 
The SHAP value ∅i of the i th feature is calculated through: 

∅i =
∑

S ⊆ F{i}
|S|!(|F| − |S| − 1 )!

|F|!

[
fS∪{i}

(
xS∪{i}

)
− fS(xS)

]
(14) 

where S represents all feature subsets from F after removing the i th 
feature. |S|!(|F|− |S|− 1 )!

|F|! represents the probability weight of S calculated 
after feature permutation and combination. fS∪{i} and fS represent the 
model predictions with and without the i th feature, respectively, and xS 
represents the values of the input features in the set S.

Fig. 8. Intersection CV trajectories by three movement types.

Table 4 
34 intersection driving behavior features.

Driving behavior features Maneuver categories

Drive-straight Left turn Right- 
turn

Speed volatility Straight/left/right_speed_std_mean 
Straight/left/right_speed_std_max

Hard events Hard braking/ 
acceleration

Hard left 
turn

Hard right 
turn

Maneuver risky 
level: extreme 
acceleration

Acceleration Straight/left/right_acc_mean 
Straight/left/right_acc_max 
Straight/left/right_acc_sum

Deceleration Straight/left/right_dec_mean 
Straight/left/right_dec_max 
Straight/left/right_dec_sum

Radial 
acceleration

− Left/ 
right_radial_acc_mean 
Left/ 
right_radial_acc_max 
Left/ 
right_radial_acc_sum
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4.2. Baselines and model evaluation metrics

To evaluate the model performance of our proposed spatial ML, we 
selected five widely used models in existing studies as baselines: 
Geographically Weighted Regression (GWR), RF, XGBoost, LightGBM, 
and Multilayer Perceptron network (MLP). For these ML models, their 
hyperparameters are tuned using random grid search to get the optimal 

values as shown in Table 5.
To evaluate the prediction performance of candidate models, three 

measures include the Root Mean Squared Error (RMSE), Mean Absolute 
Error (MAE), and R2. For these metrics, lower RMAE and MSE and 
higher R2 indicate better model prediction performance.

i

,

,
1

Fig. 9. The framework of the spatial ML fitting.

Fig. 10. Two types of adaptive kernals for bandwidth.

2

Fig. 11. Spatial-weighted prediction on test dataset.

Table 5 
The optimal model hyperparameters setting.

Models Hyperparameters Tuning range Selected 
value

RF Number of 
estimators

20, 50, 100, 200 100

Maximum tree 
depth

10, 20, 30 20

Maximum features ‘sqrt’, ‘log2′,’1/3′ ‘1/3′
XGboost, 

LightGBM
Objective function ‘squarederror’, 

‘squaredlogerror’
‘squarederror’

Learning rate 0.2, 0.1, 0.01, 0.001 0.1
Number of 
estimators

20, 50, 100, 200 50

Maximum tree 
depth

10, 20, 30 20

MLP Layer number 1, 2, 4, 6 2
Nodes of 1st, 2nd 
layer

16, 32, 64, 128 32 & 16

Loss function MSE, MAE, HuberLoss MSE
Learning rate 5e-3, 1e-3, 5e-4, 1e-4 1e-4
Batch size 32, 64, 128, 256 64
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5. Results

5.1. Intersection crash spatial autocorrelation test

The prerequisite for spatial modeling is to confirm the presence of 
spatial autocorrelation. Fig. 12(a) shows the spatial distribution of 
intersection crashes, revealing clear spatial aggregation patterns in 
downtown, urban, and suburban areas. Also, similar distribution trends 
are observed along certain high-volume arterial roads. However, high- 
crash intersections are primarily distributed in downtown and urban 
areas with heavy traffic and dense human activity. In contrast, suburban 
intersections exhibit lower crash frequencies and are more sparsely 
distributed, demonstrating the complex spatial heterogeneity. To further 
quantify their spatial autocorrelation and heterogeneity, the commonly 
used indicator Moran’s I (Anselin, 1995) was applied: 

Moran’s I =
N

∑N
i=1
∑N

j=1wij

∑N
i
∑N

j wij(yi − y)
(

yj − y
)

∑N
i (yi − y)2 (15) 

where N is the total number of intersections, yi denotes the observed 
crash frequency in intersection i, and y is the mean crash frequency 
across all intersections. The spatial weight wij is defined as the reciprocal 
of the distance between intersections i and j. Accordingly, the z-score 
can be calculated to represent the statistical significance of Moran’s I 

compared to completely random distribution: 

z − score =
Moran’s I − E(I)

̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(I)

√ =

I −
[

− 1
N− 1

]

̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(I)

√ (16) 

where E(I) and Var(I) represent the expectation and variance of Moran’s 
I under the assumption that the intersection crash data are completely 
randomly distributed. Fig. 12(b) illustrates the Moran’s I and their 
corresponding z-score at different bandwidth. Moran’s I indexes are 
consistently greater than 0 (p-value < 0.05), indicating the significantly 
positive spatial clustering of intersection crashes. The z-score reaches 
highest at bandwidth = 105, indicating that under this bandwidth the 
spatial patterns of intersection crashes are most pronounced. In other 
words, it can be seen as the optimal spatial scale that best explains the 
spatial patterns of intersection crashes. The Z-score peak method has 
been widely used to determine the best bandwidth in spatial analyses (e. 
g., arcGIS) and modeling studies (Gedamu et al., 2024; Zheng et al., 
2024; Sun et al., 2024). Therefore, this band width of 105 was used in 
our subsequent spatial ML models.

5.2. Model performance comparison

To compare model performance, 5-fold cross-validation was utilized 
to mitigate the impact of random data partitioning and ensure reliable 
performance estimation (Han et al., 2024b). To be specific, the entire 
modeling dataset was partitioned into five equally sized subsets. In each 
iteration, one-fold (20 %) is designated as the test set while the 
remaining four folds (80 %) are used for training the model. This process 
ensures that every data point is used for both training and testing exactly 
once. The performance metrics from each iteration are then averaged to 
provide a comprehensive assessment of model performance. Meanwhile, 
two recent novel spatial MLs in traffic safety studies were also imple
mented including the GWNN in Zhang et al. (2024) and GWCNNR in Li 
et al., (2025). Table 6 presents the comparison of baselines between 
three spatial ML models incorporating XGBoost, RF, and LightGBM. 
Among these baselines, the GWR model performs the weakest, with the 
highest RMSE (28.38 ± 2.54), MAE (20.32 ± 2.51), and the lowest R2 

(0.576 ± 0.12). Although GWR can account for potential spatial het
erogeneity, it cannot fit the nonlinear dependencies between intersec
tion crashes and impact factors. On the contrary, other ML models can 
effectively capture such nonlinear correlations, thus demonstrating 
better prediction performance. Among the baseline ML models, RF 
provides the best prediction performance with an RMSE of 25.32 ±
3.55, MAE of 17.73 ± 2.48, and R2 of 0.666 ± 0.10. As expected, the 
proposed spatial ML models achieve significantly improved prediction 
performance compared to conventional ML models. Overall, the three 
spatial ML models demonstrate significantly lower RMSE (<24.81) and 
MAE (<16.93), with the R2 improving to over 0.68 compared to baseline 

Fig. 12. Spatial autocorrelation analysis results.

Table 6 
Model performance comparison between baselines and three spatial ML models.

Models RMSE* MAE* R2*

Non-spatial models
Baselines GWR 28.38 (2.54) 20.32 (2.51) 0.576 (0.12)

MLP 25.78 (2.69) 17.67 (2.38) 0.657 (0.08)
XGBoost 26.60 (3.57) 17.75 (2.28) 0.631 (0.11)
RF 25.32 (3.55) 17.73 (2.48) 0.666 (0.10)
LightGBM 25.96 (2.28) 17.88 (1.87) 0.646 (0.09)

Spatial models
GWNN (Zhang et al., 2024) 24.38 (2.80) 16.83 (1.62) 0.696 (0.05)
GWCNNR (Li et al., 2025) 25.33 (3.71) 17.08 (2.15) 0.701 (0.06)
Ours Spatial XGBoost 24.81 (2.62) 16.84 (1.89) 0.686 (0.05)

Spatial RF 24.17 (3.37) 16.93 (2.03) 0.701 (0.04)
Spatial LightGBM 23.85 (2.21) 16.62 (1.19) 0.703(0.04)

*: Values in parentheses represent the standard deviation of the metric across the 
5-fold cross-validation.
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models. Notably, the spatial LightGBM model outperforms all other 
models, achieving the lowest RMSE (23.85 ± 2.21), MAE (16.62 ± 1.19) 
and highest R2 (0.703 ± 0.04). Compared to the best baseline model 
(RF), it demonstrates improvements of 5.8 %, 6.3 %, and 5.6 % in RMSE, 
MAE, and R2, respectively. Furthermore, compared to standard 
XGBoost, LightGBM, and RF models, their spatial-version models ach
ieved average improvements of 6.5 %, 5.6 % and 7.6 % in RMSE, MAE, 
and R2, respectively. Both GWNN and GWCNNR achieved similar results 
with our spatial MLs, indicating that integrating diverse MLs within 
spatial modeling is a promising way to improve prediction performance. 
Overall, the spatial LightGBM still achieved relatively better results with 
smaller fluctuations (i.e., standard deviation).

Recent studies (Abdel-Aty et al., 2024; Cai et al., 2022; Wali et al., 
2018) have identified visual environment features and driving behavior 
features as two key impact factors to intersection crashes, with the 
former representing drivers’ visual perception and the latter reflecting 
micro-level driving dynamics at intersections. To investigate the benefits 
of introducing such emerging features, a set of ablation experiments 
were conducted using the best spatial LightGBM, comprising four 
different models: 

1) Macro (base): Includes only the four macro-level features (i.e., 
traffic volume; geometric design, socioeconomic data, and road 
context classifications).

2) Macro þ V: Utilizes four macro-level features with visual environ
ment features.

3) Macro þ Lon D: Combines the four macro-level features with only 
longitudinal driving behavior features (e.g., hard acceleration and 
braking during drive-straight).

4) Macro þ V þ Full D: Incorporates the four types of macro-level 
features with both visual environment and longitudinal and lateral 
driving behavior features.

Ablation results in Fig. 13 show that the Macro model using only 
macro-level features exhibits the highest RMSE (29.83), MAE (21.11), 
and lowest R2 (0.55). While introducing visual environment features, 
the Macro + V model achieves lower RMSE (28.41), lower MAE (21.11), 
and higher R2 (0.59), indicating that drivers’ visual perception at in
tersections also impacts their driving operations and safety (Xue et al., 
2024; Yue, 2024). Overall, the Macro + V + Full D performs best (RMSE 
= 23.85, MAE = 16.62, and R2 = 0.70). Compared to the Macro + Lon D, 
it achieves a 9.2 % reduction in RMSE, a 6.5 % reduction in MAE, and a 
7.7 % increase in R2. It highlights that beyond existing studies focusing 
solely on longitudinal driving behaviors, the inclusion of lateral turning 

driving features (e.g., hard left/right turns) and visual environment 
features enables capturing more driver’s risky driving interactions and 
visual perception at intersections, thereby significantly enhancing the 
crash prediction accuracy (Guo et al., 2021; Hu and Cicchino, 2020).

5.3. Model results interpretation

This section delves into the interpretation of the spatial LightGBM 
model results. We first identify key influencing factors and their 
nonlinear effects on the frequency of intersection crashes at the global 
level (Section 5.3.1). Then, we examine the spatial heterogeneity of 
these features at the local level, offering a comprehensive understanding 
of their varying impact across different spatial locations (Section 5.3.2). 
To account for randomness in model training, we fixed the random seed 
at 42 (a common default), ensuring that feature interpretation results are 
both reproducible and consistent.

5.3.1. Global level: Nonlinear effects of factors
In the spatial LightGBM model, the global LightGBM model provides 

globally averaged estimates of the impact of features on intersection 
crashes across all intersections. Fig. 14 visualizes the top 15 features 
ranked by importance and their SHAP values. Among these, all 9 micro- 
level driving behavior features show positive impact, with high values 
(red points in Fig. 14) corresponding to positive SHAP values, high
lighting the strong correlations between risky driving behaviors and 
intersection crashes. Additionally, six macro-level features exhibit sig
nificant impact, including two traffic volume indicators, two socioeco
nomic features (the poverty ratio (P_poverty) and transit service 
frequency (Transit_Services) within surrounding census tracts), and two 
visual environment features (the vegetation and grass proportion in GSV 
images). 

(1) Driving behavior features

Fig. 15 compares the frequencies of intersection crashes and the 
SHAP values for three key driving behavior features associated with 
drive-straight, left-turn, and right-turn maneuvers. Based on the results, 
the following conclusions can be drawn: 

1) Drive-straight: The top contributing factor is the sum of extreme 
accelerations during drive-straight maneuvers (Straight_
acceleration_sum), representing the daily cumulative risk of ac
celeration behaviors within intersection areas. Fig. 15(a) shows a 
clear positive correlation between this feature and intersection 

Fig. 13. Ablation experiment results.
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crashes, indicating that risky longitudinal accelerations may 
reduce reaction time and cause dangerous gap distances with 
front vehicles, strongly increasing the likelihood of crashes 
(Azadani and Boukerche, 2022; Wali et al., 2018). Notably, these 
impacts exhibit a nonlinear trend as shown in Fig. 15(b): when 
the value is below approximately 700–800 m/s2, its SHAP values 
remain negative, indicating limited impact on intersection 
crashes. Conversely, if it exceeds this threshold (>800 m/s2), 
corresponding SHAP value shifts positive and increases sharply, 
meaning that a high cumulation of risky acceleration behaviors 
would cause substantial impact to contribute to more crashes.

2) Left-turn: The extreme acceleration of left-turn maneuvers 
(Left_acceleration_max) ranks as the fourth key factor. While less 
influential than drive-straight features, it shows a significant 
positive correlation with the intersection crash frequency (Fig. 15
(c)). It indicates that left-turn behaviors with high acceleration 
may increase the potential of conflicts involving the left-turn and 
opposing drive-straight vehicles (Appiah et al., 2020). Based on 
its SHAP distribution in Fig. 15(d), its impact present nonlinear 
trend: when the extreme acceleration is below 2.6–3.0 m/s, the 
SHAP value remains negative, indicating minimal impact on 
intersection crashes. While if it exceeds this threshold, the SHAP 
value becomes positive and increases sharply to lead to more 
crashes.

3) Right-turn: The daily count of hard right-turn events (Har
d_Right_turn_count) is the sixth most important factor to exhibit a 
positive impact on intersection crashes. Fig. 15(e) reveals the 
positive correlation between this feature and the intersection 
crash frequency. As noted by Potts et al. (2013), right-turn traffic 
may lead to potential conflicts with vehicles in the turning di
rection or opposing lanes. Hard right-turn behaviors may seri
ously exacerbate these traffic conflicts, especially when drivers 
fail to yield, thereby causing crashes. Similarly, its impact follows 
a nonlinear trend as shown in Fig. 15(f): when the value is below 
50, the SHAP value remains negative. However, once this 
threshold is exceeded, the SHAP value becomes positive at high 
levels (SHAP > 2.5), which would significantly increase inter
section crash frequencies.

(2) Macro-level features

Fig. 16 visualizes the SHAP values of four critical macro-level fea
tures. For traffic volume, both the log-transformed AADT of major and 
minor roads (Log_Major_AADT and Log_Minor_AADT) exhibit positive 
and nonlinear correlations with crashes. Their SHAP values increase 
sharply when these features exceed a threshold of 10 (i.e., 22,026 pcu/ 
day). It indicates that compared to low-traffic intersections, high traffic 
on major or minor roads leads to more exposure to risky vehicle in
teractions from different directions, thereby directly causing more 
crashes. Within the socioeconomic features, the surrounding poverty 
ratio (P_poverty) shows a positive correlation with intersection crashes, 
indicating that these high-poverty areas may experience higher rates of 
crashes than other areas, which need more attention for safety 
improvement (Li et al., 2022; Patwary et al., 2024). For visual envi
ronment features, the proportion of vegetation in intersection GSVs 
shows a negative relationship with crashes. Intersections with high 
vegetation coverage (5–10 %) have negative SHAP values, reflecting 
potential benefits of vegetation to reduce crashes.

5.3.2. Local level: Spatial heterogeneity of factors
Unlike global models, which estimate the overall impact of factors 

without considering their spatial variations, local models capture 
distinct and location-specific relationships between these factors and 
crashes to effectively reveal their spatial heterogeneity at each inter
section. To further investigate such spatial heterogeneity, feature 
importance across different intersections and their varying impact at the 
intersection level are analyzed: 

(1) Spatial distribution of feature importances

Taking the four types of hard driving events as an example, Fig. 17
presents the spatial distribution of their importances across different 
intersections. Variable importance score is derived from each local 
LightGBM model, reflecting the contribution of each variable to inter
section crash frequency prediction. For the same variable, its importance 
scores can vary between 0 (no contribution) and 1(full contribution) 
across different intersection sites. A redder color indicates relatively 
higher importance, while a greener color reflects lower importance. 
Notably, the uneven distribution of point color highlights the evident 
spatial dependency of crash frequency. From the results, we can 

Fig. 14. Global-level feature importance ranking and their SHAP values (Top-15).
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conclude that: 

1) Hard acceleration: Fig. 17(a) shows that most of the redder points 
are primarily located in urban areas, suggesting that hard accelera
tion events have a greater impact on crashes at urban intersections 
compared to other regions (e.g., downtown or suburban areas). To 
quantify the spatial differences of this feature, the model’s local 
importance scores show that intersections in urban areas exhibit 
higher scores between 0.05 and 0.24 (mean = 0.13), whereas other 
areas range from 0.01 to 0.15 (mean = 0.03). This indicates that in 
such urban areas, the importance of hard acceleration frequency is 
nearly four times greater than other locations. In other words, hard 
accelerations play a pivotal role in intersection crash frequency 
prediction in the urban areas. Specifically, most of these urban in
tersections are often situated on high-volume arterials, characterized 
by larger sizes and higher speed limits. In over 75 % of these 

intersections, the speed limits of major roads are higher than that of 
the minor roads— sometimes by as much as 10mph (e.g., 35mph on 
the minor and 45mph on the major). This result reveals that in such 
expansive intersections with high speed limit difference, drivers may 
be more likely to riskily accelerate to reach higher speeds, thereby 
significantly increasing the risk of crashes (Arvin et al., 2019; Wali 
et al., 2018).

2) Hard braking: As shown in Fig. 17(b), the redder points are highly 
concentrated in downtown residential areas, while green points are 
distributed across the urban and suburban areas. It reveals that hard 
braking is a significant contributor to crashes at downtown in
tersections. The distribution of local importance scores indicates that 
intersections in downtown areas exhibit values between 0.08 and 
0.20 (mean = 0.15), while those in other areas range from 0.02 to 
0.04 (mean = 0.03). These quantitative results mean that 
hard‑braking frequency is roughly five times more influential in 

Fig. 15. Scatter plots of intersection crash frequency and SHAP with driving behavior features.
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predicting intersection crashes in downtown areas than elsewhere. 
This might be because these are highly dense street networks and 
heavier roadside activities in downtown areas. For instance, inter
section spacing in these downtown zones is typically 150–250 m, 
which is significantly less than that of urban (300–350 m) and sub
urban area (800–100 m). Moreover, higher traffic and human ac
tivities are presented in this area. As a results, such traffic 
environment makes drivers need to brake frequently when 
approaching intersections (Dumbaugh et al., 2023; Xie et al., 2014), 
making hard braking events more likely to occur to become a pri
mary risky issue for crashes (Gu et al., 2023).

3) Hard left-turn: Unlike the spatial patterns of hard acceleration and 
braking events, Fig. 17(c) illustrates the redder points of hard left- 
turn events are mainly distributed at specific urban and suburban 
areas. The local important scores in these urban and suburban in
tersections range from 0.06 to 0.27, with an average of 0.14—nearly 
seven times higher than the average score in other areas (0.02). This 
highlights the substantial spatial variation in the impact of hard left- 
turn behavior on intersection crash frequency. Specifically, these 
points are mainly located at intersections along with specific main 
arterials or freeways. This indicates that these intersections may 
have more turning traffic exiting from high-volume roadways, thus 
causing more left-turn conflicts with other direction vehicles. CV 
data confirm that the ratio of left-turn traffic accounts for 33–39 % of 
the total volume at these intersections, higher than the average level 
(25.2 %). As a result, risky left-turn behaviors could lead to crashes 
with a higher probability in these intersections.

4) Hard right-turn: The redder points of hard right-turn events are 
distributed in the southern and northern suburban areas without a 
specific spatial pattern as shown in Fig. 17(d). For most intersections, 
the local importance scores of hard right turns are less than 0.01, 

indicating a relatively minor effect on intersection crashes. However, 
in these southern and northern suburban intersections, these scores 
rise significantly to 0.10–0.20, suggesting a greater impact of risky 
hard right turns on crash occurrences in these regions. This indicates 
that risky right-turn behavior is a more significant issue to lead to 
crash on these suburban highways and arterials. Therefore, con
trolling such risky turning behaviors can be an effective way to 
reduce crashes for suburban intersection management (Hu and Cic
chino, 2020). 
(2) Case studies: feature impact at high-crash intersections

Fig. 18 depicts an urban intersection with a speed limit of 45 mph on 
the major road. Based on crash records, the pie chart shows the ratio of 
major crash types at this intersection, with rear-end crashes accounting 
for the majority (63 %). The model SHAP values in red shapes represent 
each feature’s contribution to the estimated crash numbers (f(x)), indi
cating how many crashes deviate from the average level (E[f(x)]). The 
results show that the crashes at this intersection are mainly driven by the 
longitudinal acceleration driving features (e.g., the count of hard ac
celeration and the sum of extreme accelerations of drive-straight ma
neuvers (Straight_acceleration_sum)). A lot of hard acceleration events 
are observed at the four exit approaches of the intersection, meaning 
that drivers would accelerate rapidly upon exiting the intersection, 
largely leading to more rear-end crashes. Meanwhile, risky right-turn 
behaviors (e.g., Right_acceleration_max) and risky left-turn behaviors 
(e.g., Left_acceleration_max) also show critical contributions and are 
estimated to increase by 28.1 and 20.6 crashes, respectively. These 
lateral turning events are also recorded at these exit approaches, which 
may result in frequent conflicts between such turning and drive-straight 
vehicles, thus leading to sideswipe and other types of crashes.

Fig. 19 is an example of a large-size suburban intersection with speed 

Fig. 16. SHAP plots of four macro-level features.

L. Han and M. Abdel-Aty                                                                                                                                                                                                                     Accident Analysis and Prevention 220 (2025) 108180 

17 



limit of 50 mph on the major road. In this intersection, sideswipe and 
left-turn crashes are the main concerns, accounting for 44 % of the total 
crashes. Results show that risky left-turn behaviors are the primary 
contributing factor of crashes. Specifically, more than 388 hard left-turn 
events are identified daily, and 70.1 crashes are estimated to be attrib
uted to left-turn features (e.g., the sum of extreme accelerations during 
left-turn maneuvers, Left_acceleration_sum), highlighting a significant 
safety concern regarding left-turn movements. Another safety issue is 
that risky acceleration during drive-straight maneuvers (Straight_
acceleration_sum) contributes to an increase of 43 crashes compared to 
the average level. Due to the high speed limit, drivers tend to accelerate 
to reach the speed limit or beyond. Thus, a lot of hard acceleration 
events occurred along the road, which may lead to rear-end crashes. 
Meanwhile, a significant number of hard right-turn events are also 
recorded, contributing to about 17 crashes.

6. Discussion

6.1. Crash contributing factors comparison

In general, the overall relationship between macro-level contributing 
factors and intersection crash frequency is consistent with previous 
studies (Cai et al., 2018; Park et al., 2020; Pulugurtha and Sambhara, 
2011; Yue, 2024). For example, as the most important traffic exposures 

for crashes, both the AADT of major and minor roads are found to have a 
strong positive correlation with crash frequency, which is consistent 
with existing studies (Cai et al., 2018; Xue et al., 2024; Yue, 2024). The 
surrounding poverty ratio (P_poverty) is found to show a positive cor
relation with intersection crashes. Li et al. (2022) and Patwary et al. 
(2024) also found that high poverty areas have a statistically significant 
higher crash frequency than other areas. Interestingly, the visual envi
ronment feature—the proportion of vegetation at intersections—shows 
a negative relationship with crashes, also echoing with recent studies by 
Abdel-Aty et al., 2024; Cai et al., 2022; and Yue, 2024. They found that 
roadside vegetation may make drivers feel a narrow road and exercise 
more caution, thereby reducing speeding, distracted driving, and 
crashes.

As for the micro-level crash contributing factors, this study reveals 
several distinctive patterns linking risky driving behaviors with inter
section crash frequency: 

1) Nonlinear impacts of risky driving behaviors on intersection crashes 
commonly exist. For example, the daily cumulative risk of acceler
ation behaviors is identified as the leading contributor to intersection 
crashes. While its impact remains low under a certain threshold 
(<1000 m/s2), exceeding this threshold causes the corresponding 
SHAP value to turn positive and increase sharply, leading to a 

Fig. 17. Spatial distribution of importance scores of four hard event features.
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substantial rise in crashes. Similar nonlinear effects are also found in 
Gu et al., (2023).

2) Compared to models that only use longitudinal driving behaviors, 
models further considering lateral left and right turning behaviors 
achieve superior predictions. The model interpretation also shows 
that several lateral driving behavior features (e.g., the extreme ac
celeration of left-turn maneuvers, daily count of hard right-turn 
events) are significantly positively associated with crash frequency. 
All these results highlight the critical role of lateral turning maneu
vers for intersection crash modeling.

3) Local models in spatial ML reveal pronounced spatial heterogeneous 
relationships between risky driving behavior features and crashes 
across different intersections. Findings indicate that in downtown 
areas with dense street networks, hard braking events are more likely 
to occur and become a primary risk factor for crashes. While for 
urban areas, drivers may be more likely to risky accelerate to reach 
high speed limit, thereby significantly increasing the risk of crashes. 
At some suburban intersections, left-turn traffic may experience 
significant conflicts with vehicles traveling in other directions, 
highlighting the need for further risky-turn managements to enhance 
safety.

6.2. Potential safety countermeasures and policies

Based on the main findings as discussed at Section 6.1, several 

important implications and safety countermeasures can be derived for 
intersection safety practices and policies. 

(1) Pay more attention to improving intersection safety at high- 
volume, underdeveloped communities: The results show that 
the intersection traffic and poverty ratio of communities sur
rounding intersections is positively correlated with intersection 
crashes. It indicates that such areas always have heavy traffic and 
more low-income population suffer more crashes and safety issue, 
which need increased attention and government support. For 
example, future transportation plans and policies should priori
tize developing or maintaining road infrastructure to enhance 
safety in these underdeveloped communities.

(2) Coordinated signal timing in urban areas to reduce hard braking 
and acceleration at intersections: It is found that most in
tersections in urban and urban-core areas experience frequent 
hard braking and acceleration events, leading to frequent rear- 
end crashes. Therefore, implementing coordinated signal timing 
on major arterials may be an effective way to reduce stop-and-go 
traffic, thereby decreasing abrupt acceleration and braking ma
neuvers. Additionally, lowering the speed limits at locations with 
high rates of hard acceleration—for example, reducing from 45 
mph to 40 mph or 35 mph—may discourage rapid acceleration 
and enhance overall safety.

Fig. 18. Case study 1: Urban high-crash intersection.
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(3) Implement protected left/right-turn signals at suburban in
tersections with frequent hard turns: Several suburban in
tersections exhibit high proportions of left-turn and sideswipe 
crashes, driven primarily by frequent hard left/right turning 
maneuvers. To improve safety at these locations, consider adding 
or extending protected left- and right-turn signal phases to avoid 
potential conflicts. Additionally, implementing the “No Right- 
turn on Red” restriction can also reduce conflicts between right- 
turning and through traffic, thereby lowering the incidence of 
right-turn related crashes.

7. Conclusion

Existing studies have developed both statistical and machine 
learning models to identify factors contributing to intersection crashes 
(Kamrani et al., 2017; Wali et al., 2018). However, due to data limita
tion, previous studies have focused on macro-level static infrastructure 
and highly aggregated traffic features, ignoring the influence of micro- 
level human driving behaviors on intersection crashes (Gu et al., 
2023; Wang et al., 2021). Leveraging emerging CV data, some studies 
have explored the impact of longitudinal driving behaviors (e.g., hard 
acceleration and braking) on intersection crashes, but critical lateral 
behaviors like left and right turns have largely been overlooked (Hunter 
et al., 2021). In terms of modeling approaches, existing studies have 
mainly integrated spatial effects into statistical methods to account for 

complex spatial heterogeneity (Li et al., 2022). These models, however, 
rely heavily on the linear assumptions, resulting in poor prediction 
performance and difficulties in handling high-dimensional traffic data 
(Zhou et al., 2023).

To address the first research gap, we divided intersection CV tra
jectories into drive-straight, left-turn, and right-turn movements. 
Driving behavior features at both longitudinal (e.g., hard braking and 
acceleration) and lateral turning (e.g., hard left and right turn) ma
neuvers were identified to capture the micro-level driving dynamics 
within intersections. To overcome modeling limitations, we proposed a 
novel spatial ML framework integrating nonlinear ML models (e.g., RF, 
XGBoost, and LightGBM) with geographically weighted regression. 
High-resolution CV data at Hillsborough County were utilized for ex
periments. Based on the empirical results, two key insights can be 
concluded: 

1) The inclusion of risky turning driving features (e.g., hard left/right 
turns) enables capturing more lateral driving interactions to enhance 
intersection crash prediction. For instance, risky left-turn behaviors 
with high acceleration rank as the 4th most important feature with 
positive association with intersection crashes. It indicates that such 
risky left-turn behaviors may increase potential conflicts between 
left-turn vehicles and other traffic streams, thus undermining inter
section safety.

Fig. 19. Case study 2: Suburban high-crash intersection.
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2) Spatial heterogeneity of micro driving behaviors reveals that in
tersections at different locations experience different risky‑driving 
behavior issues. In downtown, hard braking events primarily influ
ence intersection crashes. Drivers’ hard acceleration is more likely to 
lead to rear-end crashes in urban areas, aligning with findings in Gu 
et al. 2023. In contrast, at suburban intersections with high left-turn 
volume, hard left turns show greater influence on sideswipe and left 
turn crashes. By pinpointing intersections with risky left/right turn 
behaviors, it can provide new actionable insights for traffic man
agement and targeted safety interventions.

The proposed method can be used for intersection safety evaluation 
and management. On the one hand, even short-term CV data enables 
researchers to proactively identify hotspot intersections where crashes 
are waiting to happen. These hotspots may be those intersections with 
low crash frequency but high risky driving events (Kamrani et al., 2017; 
Wang et al., 2024c). On the other hand, utilizing V2X communication, 
proactive warnings could be generated at these high-risk intersections to 
inform drivers about potential hazards, which could enhance drivers’ 
situational awareness and prevent crashes (Arvin et al., 2019; Chen 
et al., 2024). Nonetheless, there are still a few limitations in the current 
study. First, the current study was based on a specific region. Future 
research should consider testing the model in diverse geographic con
texts to evaluate its generalizability. Second, the penetration of CV data 
may vary across different intersections, which would potentially affect 
the feature values and further affect the local model performance. Third, 
within the CV dataset, over 53 % of vehicles are multipurpose passenger 
vehicles (e.g., SUV, Vans, and Minivans), 31.5 % are large-size pickup 
trucks, and 15.3 % are sedans. Regarding fuel type, 91.8 % run on 
gasoline, 7 % on diesel, and only 1.2 % are electric vehicles (EVs). 

Although these results indicate that the CV dataset comprises a variety of 
vehicle types, the proportion of EVs is relatively small in the Hills
borough area, which may introduce sampling bias if the method is 
applied directly to regions with high EV penetration (e.g., Shanghai or 
Beijing). Finally, short-time CV data were used in this study, yet inter
section driving behaviors may have changed over the studied period. 
Due to data limitations, existing studies typically collected CV data over 
a limited duration (e.g., 1–3 months) (Arvin et al., 2019; Hunter et al., 
2021; Joshi et al., 2024). It is necessary to collect more extensive CV 
data to examine the temporal stability of driving behaviors and their 
correlations with crashes.
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Appendix 

Table A1 
Descriptive Statistics of the target and macro-level variables.

Variable Definition Min Max Mean STD

Crashes Crashes per intersection from June 2021 to May 2024 0 240 49.32 44.72
Traffic volume
Log_Major_AADT The log value of AADT on major road in 2021–2023 (pcu) 6.11 11.18 9.79 0.86
Log_Minor_AADT The log value of AADT on minor road in 2021–2023 (pcu) 5.30 10.89 8.90 0.90
Log_Major_TruckAADT The log value of truck AADT on major road in 2021–2023 (pcu) 3.56 9.01 7.18 0.88
Log_Minor_TruckAADT The log value of truck AADT on minor road in 2021–2023 (pcu) 2.77 8.56 6.36 0.91
Geometric design
Legs_4 4-legged (yes = 1) 0 1 0.73 0.45
Major_lanes Major road lanes > 4 (yes = 1) 0 1 0.20 0.40
Minor_lanes Minor road lanes > 4 (yes = 1) 0 1 0.02 0.14
Major_speed_low Speed limit on major road < 40 mph (yes = 1) 0 1 0.38 0.49
Major_speed_medium Speed limit on major road in 40–50 mph (yes = 1) 0 1 0.59 0.49
Major_speed_high Speed limit on major road > 50 mph (yes = 1) 0 1 0.03 0.18
Minor_speed_low Speed limit on minor road < 40 mph (yes = 1) 0 1 0.66 0.47
Minor_speed_medium Speed limit on minor road in 40–50 mph (yes = 1) 0 1 0.34 0.47
Minor_speed_high Speed limit on minor road > 50 mph (yes = 1) 0 1 0.00 0.06
Major_surface_width The surface width of major road (feet) 13 96 43.19 17.21
Minor_surface_width The surface width of minor road (feet) 12 69 31.23 10.83
Major_minor_collector Major road class is minor collector (yes = 1) 0 1 0.02 0.14
Major_major_collector Major road class is major collector (yes = 1) 0 1 0.24 0.43
Major_minor_arterial Major road class is minor arterial (yes = 1) 0 1 0.35 0.48
Major_major_arterial Major road class is major arterial (yes = 1) 0 1 0.39 0.49
Minor_minor_local Minor road class is local road (yes = 1) 0 1 0.02 0.13
Minor_minor_collector Minor road class is minor collector (yes = 1) 0 1 0.20 0.40
Minor_major_collector Minor road class is major collector (yes = 1) 0 1 0.56 0.50
Minor_minor_arterial Minor road class is minor arterial (yes = 1) 0 1 0.19 0.40
Minor_major_arterial Minor road class is major arterial (yes = 1) 0 1 0.04 0.19
Major_median_marking The median type of major road is a traffic marking (yes = 1) 0 1 0.53 0.50
Major_median_separator The median type of major road is a raised traffic separator (yes = 1) 0 1 0.28 0.45
Major_median_curb The median type of major road is curb and vegetation (yes = 1) 0 1 0.13 0.34
Minor_median_marking The median type of major road is a traffic marking (yes = 1) 0 1 0.71 0.45

(continued on next page)
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Table A1 (continued )

Variable Definition Min Max Mean STD

Minor_median_separator The median type of minor road is a raised traffic separator (yes = 1) 0 1 0.18 0.39
Minor_median_curb The median type of minor road is curb and vegetation (yes = 1) 0 1 0.09 0.29
Socioeconomic variables
Population Average population (1000 people) 0.59 10.66 4.06 1.41
Median_Income Average median income (10000$) 1.28 15.07 5.79 2.52
P_Over65 Percent of population 65 years or older (%) 2.87 78.74 13.57 4.94
P_Under17 Percent of population 17 years or younger (%) 0.42 37.70 19.65 7.17
P_Unemployed Percent of people age 16 + unemployed (%) 0 14.60 3.73 1.95
P_Poverty Percent of population with income below average poverty level (%) 0.72 74.02 37.56 15.38
P_Uneducation Percent of people age 25 + with less than a high school diploma (%) 0.51 41.90 14.51 7.84
P_Disability Percent of population with a disability (%) 3.19 62.10 13.30 4.49
P_Mobile_Homes Percent of total housing units that are mobile homes (%) 0 79.10 4.79 9.94
P_Nocar Percent of households with no car (%) 0 35.17 10.46 7.46
Commute_Time Average commute time to work (min) 7.77 39.08 25.09 4.48
Transit_Services Frequency of Transit Services per Sq Mi 0 293.02 26.98 36.41
Road context classifications
C3R Intersection at suburban residential area (yes = 1) 0 1 0.20 0.40
C3C Intersection at suburban commercial area (yes = 1) 0 1 0.14 0.35
C4 Intersection at urban general area (yes = 1) 0 1 0.42 0.49
C5 & C6 Intersection at urban center area (yes = 1) 0 1 0.08 0.27
Visual environment features
Sidewalk Proportion of sidewalk area within the intersection GSV images (%) 0 7.44 1.44 1.22
Grass Proportion of grass or terrain within the intersection GSV images (%) 0 20.36 2.09 2.12
Vegetation Proportion of vegetation (e.g., tree, grass) within the intersection GSV images (%) 1.11 34.60 8.43 4.90
Road Proportion of road within the intersection GSV images (%) 16.67 45.80 41.05 3.43
Buildings Proportion of buildings within the intersection GSV images (%) 0 36.31 4.34 6.33
Vehicle Proportion of vehicles within the intersection GSV images (%) 0 29.94 2.08 2.33
Sky Proportion of sky visible within the intersection GSV images (%) 9.06 47.00 37.80 7.25

Table A2 
Descriptive Statistics of the micro-level driving behavior variables.

Variable Definition Min Max Mean STD

Speed volatility
Straight_speed_std_mean Mean of speed standard deviation of drive-straight trajectories (m/s) 2.36 9.45 5.62 1.12
Left_speed_std_mean Mean of speed standard deviation of left-turn trajectories (m/s) 2.97 8.91 6.12 1.26
Right_speed_std_mean Mean of speed standard deviation of right-turn trajectories (m/s) 1.85 8.54 6.22 1.18
Straight_speed_std_max Maximum of speed standard deviation of drive-straight trajectories (m/s) 11.43 29.03 19.62 3.45
Left_speed_std_max Maximum of speed standard deviation of left-turn trajectories (m/s) 7.24 25.57 15.15 2.58
Right_speed_std_max Maximum of speed standard deviation of right-turn trajectories (m/s) 4.36 24.12 15.54 2.96
Hard events
Hard braking Number of hard braking at intersection per day 0 120.19 25.14 25.63
Hard acceleration Number of hard accelerations at intersection per day 0 239.57 37.98 40.35
Hard left turning Number of hard left turn at intersection per day 0 388.81 43.28 57.50
Hard right turning Number of hard right turn at intersection per day 0 334.24 33.42 48.16
Risky maneuver with extreme accelerations
Straight_acc_mean Mean of acceleration of drive-straight trajectories (m/s2) 0.24 1.34 0.78 0.17
Left_acc_mean Mean of acceleration of left-turn trajectories (m/s2) 0.37 1.48 1.12 0.23
Right_acc_mean Mean of acceleration of right-turn trajectories (m/s2) 0.33 1.56 1.11 0.24
Straight_acc_max Maximum of acceleration of drive-straight trajectories (m/s2) 1.64 5.47 3.49 0.48
Left_acc_max Maximum of acceleration of left-turn trajectories (m/s2) 1.45 3.68 2.67 0.46
Right_acc_max Maximum of acceleration of right-turn trajectories (m/s2) 0.57 3.97 2.80 0.51
Straight_acc_sum Sum of acceleration of drive-straight trajectories (m/s2) 31.27 3075.24 725.57 503.28
Left_acc_sum Sum of acceleration of left-turn trajectories (m/s2) 8.49 884.49 177.70 159.04
Right_acc_sum Sum of acceleration of right-turn trajectories (m/s2) 1.12 954.57 179.29 157.04
Straight_dec_mean Mean of deceleration of drive-straight trajectories (m/s2) 0.26 1.61 0.85 0.21
Left_dec_mean Mean of deceleration of left-turn trajectories (m/s2) 0.11 1.04 0.42 0.16
Right_dec_mean Mean of deceleration of right-turn trajectories (m/s2) 0.17 1.46 0.81 0.21
Straight_dec_max Maximum of deceleration of drive-straight trajectories (m/s2) 2.41 5.88 3.94 0.57
Left_dec_max Maximum of deceleration of left-turn trajectories (m/s2) 1.20 3.72 2.47 0.39
Right_dec_max Maximum of deceleration of right-turn trajectories (m/s2) 0.52 4.07 2.84 0.51
Straight_dec_sum Sum of deceleration of drive-straight trajectories (m/s2) 38.16 2381.07 725.79 429.43
Left_dec_sum Sum of deceleration of left-turn trajectories (m/s2) 5.14 643.55 54.51 47.15
Right_dec_sum Sum of deceleration of right-turn trajectories (m/s2) 1.46 638.96 129.77 115.18
Left_radial_acc_mean Mean of radial acceleration of left-turn trajectories (m/s2) 1.01 3.05 2.23 0.37
Right_radial_acc_mean Mean of radial acceleration of right-turn trajectories (m/s2) 0.71 2.81 2.10 0.35
Left_radial_acc_max Maximum of radial acceleration of left-turn trajectories (m/s2) 2.87 8.83 4.94 0.88
Right_radial_acc_max Maximum of radial acceleration of right-turn trajectories (m/s2) 1.02 7.84 4.68 0.74
Left_radial_acc_sum Sum of radial acceleration of left-turn trajectories (m/s2) 15.92 2061.77 357.37 325.46
Right_radial_acc_sum Sum of radial acceleration of right-turn trajectories (m/s2) 2.11 1888.46 349.25 320.00
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